
1 The probability that a product of random num-bers is less than a �xed constant1.1 First proof (by Howard E. Haber)Consider n random numbers, r1, r2,. . . ,rn each uniformly distributed on theinterval [0; 1]. Let Pn(a) be the probability that the product r1r2 � � �rn < afor some number a 2 [0; 1]. To compute Pn(a), I shall �rst consider In(a) �1 � Pn(a) which is the probability that r1r2 � � �rn > a. Clearly, In(a) is equalto the hypervolume of the region bounded by the hypersurface x1x2 � � �xn = aand the n hyperplanes x1 = 1; x2 = 1; : : : ; xn = 1. Explicitly, this hypervolumeis given by the n-fold integral:In(a) = Z 1a dx1 Z 1a=x1 dx2 � � �Z 1a=(x1x2���xn�1) dxn : (1)It is convenient to rewrite this in the form of a recursion relation. Start withIn+1(a) = Z 1a dx1 Z 1a=x1 dx2 � � �Z 1a=(x1x2���xn) dxn+1 = In(a)� aJn(a) ; (2)where Jn(a) � Z 1a dx1x1 Z 1a=x1 dx2x2 � � �Z 1a=(x1x2���xn�1) dxnxn : (3)after performing one integration over xn+1. Since Pn(a) = 1 � In(a), we havededuced the following recursion relation for the Pn(a):Pn+1(a) = Pn(a) + aJn(a) : (4)To evaluate Jn(a), make a change of variables from the xn to yn = � lnxn.In addition, I de�ne b � � ln a (note that b > 0 since a 2 [0; 1]). Then,Jn(a) � Z b0 dy1 Z b�y10 dy2 � � �Z b�y1�y2�:::�yn�10 dyn : (5)Now observe the geometrical interpretation of Jn. First, J1 is the length of theline from 0 to b. J2 is the area within the unit square lying below the diagonal,which is equal to half the area of the square. J3 is the volume within the cubelying below the plane y1+y2+y3 = b, which is equal to 1=3! or one sixth of thevolume of the cube. Thus, Jn is the hypervolume lying below the hyperplaney1 + y2 + � � �yn = b which is equal to 1=n! times the volume of the hypercube(whose side has length b). That is,Jn(a) = bnn! = (� ln a)nn! : (6)Note that this result can also be derived by a straightforward change of variables.Namely, let z1 = b� y1; z2 = b � y1 � y2; : : : ; zn = b� y1 � y2 � : : :� yn. The1



Jacobian of the transformation is 1. Thus, we end up with:Jn(a) � Z b0 dz1 Z z10 dz2 � � �Z zn�10 dzn : (7)All n integrals can now be performed sequentially, and one simply recovers theresult for Jn(a) given by eq. (6). Thus, we have derived the recursion relation:Pn+1(a) = Pn(a) + a(� ln a)nn! : (8)To obtain a closed form expression for Pn(a), simply note that P1(a) = a. (Infact, we can de�ne P0(a) = 0.) Iterating eq. (8), one ends up with:Pn(a) = a n�1Xk=0 (� ln a)kk! : (9)It is interesting to consider the limit as n!1. For any �xed value of a, weexpect Pn ! 1 in this limit. But,1Xk=0 (�1)k (ln a)kk! = e� ln a = 1a (10)Inserting this into eq. (9), one indeed con�rms the expectation that Pn ! 1 asn!1.1.2 Second proof (following Harrison B. Prosper)We start from the integral representation of Pn(a)Pn(a) = Z 10 dx1 Z 10 dx2 � � �Z 10 dxn�(a� x1x2 � � �xn) ; (11)where �(x) = � 1; if x > 0,0; if x < 0, (12)is the Heavyside step function. It turns out that it is simpler to start from theequivalent representationPn(a) = Z 10 dx1 Z 10 dx2 � � �Z 10 dxn�(ln a� lnx1 � : : :� lnxn) ; (13)Taking the derivative with respect to ln a, and usingd�(x)dx = �(x) = 12� Z 1�1 dt eixt ; (14)2



it follows that dPnd lna = 12� Z 1�1 dt eit ln a nYi=1 Z 10 dxi e�it ln xi : (15)Now, Z 10 dx e�it ln x = Z 10 x�it dx = 11� it : (16)Thus, dPnd lna = 12� Z 1�1 dt eit ln a(1� it)n : (17)This integral is easily evaluated by the method of contour integration in thecomplex plane. One can close the contour in the lower half of the complex t-plane (since 0 < a < 1 implies that lna < 0, the contribution from the semicircleat in�nity vanishes); note that the contour of integration is clockwise. There isone nth order pole at t = �i enclosed by the contour, so one obtains for theintegral �2�i multiplied by the residue of the integrand at t = �i. Recallingthe formula: Res p = 1(n � 1)! � ddz�n�1 �(t� p)nf(t)�����t=p ; (18)for the residue of a function f(t) that has an nth order pole at t = p, andcarefully writing (t+ i)n = in(1� it)n in the numerator, we end up with:dPnd lna = a(� ln a)n�1(n� 1)! : (19)To complete the computation, write d lna = da=a and integrate to get Pn, withthe boundary condition that Pn(a = 0) = 0.Pn(a) = 1(n� 1)! Z a0 (� lnx)n�1 dx= 1(n� 1)! Z 1� ln a e�y yn�1 dy= a(� ln a)n�1(n� 1)! + Pn�1(a) : (20)Above, we have changed the integration variable to y = � lnx and integratedby parts once. Finally, letting n� 1! n yields precisely the recursion relationfor Pn(a) obtained in the �rst proof [see eq. (8)]. Thus the �nal expression forPn(a) given in eq. (9) follows. 3



1.3 Third proof (following Zoltan Ligeti)It is easy to see that the Pn satisfy the following recursion relation:Pn+1(a) = Pn(a) + a Z 1a P 0n(x) dxx ; (21)where P 0n(x) � dPn(x)=dx. First, if x1x2 � � �xn < a, then it follows thatx1x2 � � �xn+1 < a, since xi 2 [0; 1]. This accounts for the �rst term on the righthand side of eq. (21). Second, if x1x2 � � �xn � x > a, then x1x2 � � �xn+1 < aonly if xn+1 < a=x. But, P 0n(x)dx is the probability that x1x2 � � �xn lies in theinterval [x; x+ dx], while the probability that xn+1 lies in the interval [0; a=x]is simply a=x. This then accounts for the second term of eq. (21).We next take the derivative of eq. (21) with respect to a. Then, two of theresulting three terms on the right hand side of eq. (21) cancel, which yieldsP 0n+1(a) = Z 1a P 0n(x) dxx ; (22)with boundary condition of P 01(x) = 1.1 We then compute the P 0n successivelyfor n = 1; 2 : : :; in general,P 0n(a) = 1(n� 2)! Z 1a (� lnx)n�2 dxx = (� ln a)n�1(n � 1)! ; (23)after changing the integration variable to y = � lnx. Inserting this result intoeq. (21), we reproduce eq. (8), and the �nal result of eq. (9) once again follows.[Alternatively, note that the result of eq. (23) is equivalent to eq. (19).]Finally, we can make a connection to the �rst proof. Recall that eq. (4)states that Pn+1(a) = Pn(a) + aJn(a). Using eq. (3), we can write:Jn(a) = Z 10 dx1x1 Z 10 dx2x2 � � �Z 10 dxnxn �(x1x2 � � �xn � a) (24)= Z 1a dxx Z 10 dx1 Z 10 dx2 � � �Z 10 dxn �(x� x1x2 � � �xn) (25)= Z 1a P 0n(x) dxx ; (26)and eq. (21) then follows. Note that the last step above [eq. (26)] followsfrom eq. (11) [simply take the derivative to convert the �-function into the�-function]. Moreover, if one carries out the integration over x in eq. (25) byusing the �-function, one obtains eq. (24) since the argument of the �-functionvanishes inside the integration region a < x < 1 only if x1x2 � � �xn > a.Howard E. HaberDecember 6, 19981Clearly, P1(x) = x for x 2 [0;1], since this is the probability that a randomly chosennumber from the interval [0;1] is less than x. 4


