1 The probability that a product of random num-
bers is less than a fixed constant

1.1 First proof (by Howard E. Haber)

Consider n random numbers, 71, rs,...,r, each uniformly distributed on the
interval [0,1]. Let P,(a) be the probability that the product rire---r, < a
for some number a € [0,1]. To compute P,(a), I shall first consider I,(a) =
1 — P, (a) which is the probability that v1ry---r, > a. Clearly, I,(a) is equal
to the hypervolume of the region bounded by the hypersurface z1z5 -z, = a
and the n hyperplanes x1 = 1,25 = 1,..., 2, = 1. Explicitly, this hypervolume
is given by the n-fold integral:

1 1 1
a) :/ da:l/ da:2~~~/ dz,, . (1)
a alxy af(z1Z2Cpno1)

It 1s convenient to rewrite this in the form of a recursion relation. Start with

Tt ( / da:l/ / deni1 = In(a) — aJp(a), (2)
/1 af(z1z2T )
where
dl‘l dl‘z dxn
=[5 o
/1 T2 af(z1Z2Tr_1) Tn

after performing one integration over #,4,. Since P,(a) = 1 — I,,(a), we have
deduced the following recursion relation for the P,(a):

Pasa(a) = Pa(a) + adu(a) (4)

To evaluate J,,(a), make a change of variables from the z, to y, = — Inaz,.
In addition, T define 6 = —Ina (note that b > 0 since a € [0, 1]). Then,

b— y1 b—y1—Yo2—...—Yn—1
/ dn [ | dy (5)

Now observe the geometrical interpretation of J,. First, Jy is the length of the
line from 0 to b. Jo is the area within the unit square lying below the diagonal,
which is equal to half the area of the square. Js3 is the volume within the cube
lying below the plane y; + y2 4+ ys = b, which is equal to 1/3! or one sixth of the
volume of the cube. Thus, J, is the hypervolume lying below the hyperplane
Y1 + Y2 + - -yn = b which is equal to 1/n! times the volume of the hypercube
(whose side has length b). That is,

b (=Ina)?

(6)

Note that this result can also be derived by a straightforward change of variables.
Namely, let 21 = b—y1, 20 =b—y1 —y2,...,2n =b—y1 —ys — ... — y,. The



Jacobian of the transformation is 1. Thus, we end up with:

b 21 Zn—1
Jn(a) E/O dz1/0 dz2~~~/0 dz,, . (7)

All n integrals can now be performed sequentially, and one simply recovers the
result for J,(a) given by eq. (6). Thus, we have derived the recursion relation:

a(—Ina)” .

Pasila) = Paa) + 51

(8)

To obtain a closed form expression for P,(a), simply note that P;(a) = a. (In
fact, we can define Py(a) = 0.) Tterating eq. (8), one ends up with:

Pufa)=ay RO (9)

It is interesting to consider the limit as n — oo. For any fixed value of a, we
expect P, — 1 in this limit. But,

i In a)* —Ina 1
(_1)k( k') — e 1 — (10)
k=0

Inserting this into eq. (9), one indeed confirms the expectation that P, — 1 as
n — 0.

1.2 Second proof (following Harrison B. Prosper)

We start from the integral representation of P,(a)

1 1 1
Pn(a):/o da:l/o da:2~~~/0 de, O(a — z122 - xy), (11)

where
(1, ifz>0,
9@)_{Q if <0, (12)

is the Heavyside step function. It turns out that it is simpler to start from the
equivalent representation

1 1 1
Pn(a):/o da:l/o da:2~~~/0 de, O(lna —Iney — ... —Inzy,), (13)

Taking the derivative with respect to Ina, and using

(ﬁf):&M:E%/wﬁé“, (14)

— 00



1t follows that

dlna 27 J_
i=1
Now,
1 . o 1
/ dx e"tn® :/ 7 de = — . (16)
0 0 1 — 1t
Thus,
dPn 1 [ee) eitlna
—_— = — dt ———— . 17
dlna 2w /_Oo (1 —at)n (17)

This integral is easily evaluated by the method of contour integration in the
complex plane. One can close the contour in the lower half of the complex ¢-
plane (since 0 < a < 1 implies that Ina < 0, the contribution from the semicircle
at infinity vanishes); note that the contour of integration is clockwise. There is
one nth order pole at t = —i¢ enclosed by the contour, so one obtains for the
integral —277 multiplied by the residue of the integrand at { = —:. Recalling
the formula:

1 d n—1 .
Resp = m (E) [(t -p) f(t)] ) (18)

t=p

for the residue of a function f(¢) that has an nth order pole at ¢ = p, and
carefully writing (¢ + 4)” = ¢” (1 — #)" in the numerator, we end up with:

dpb, a(—Ina)"~!
= . 1
dlna (n—1)! (19)

To complete the computation, write dIna = da/a and integrate to get P,, with
the boundary condition that P,(a = 0) = 0.

1 ¢ n—1
1 o0
— -y, n—1 d
(n - 1)' /—lna ‘ Y Y
a(—Ina)"~!
= ———+ P . 2
(n — 1)' + 1(&) ( 0)
Above, we have changed the integration variable to y = —In z and integrated

by parts once. Finally, letting n — 1 — n yields precisely the recursion relation
for P,(a) obtained in the first proof [see eq. (8)]. Thus the final expression for
P, (a) given in eq. (9) follows.



1.3 Third proof (following Zoltan Ligeti)
It is easy to see that the P, satisfy the following recursion relation:

1
Pa(e) = Pala)+a [ P (21)
where P)(x) = dPy(z)/dx. TFirst, if ®y20- -2, < a, then it follows that
1o Tpi1 < a, since x; € [0, 1]. This accounts for the first term on the right
hand side of eq. (21). Second, if 122 - 2, = « > a, then z129- 2y < a
only if 41 < a/z. But, P! (x)dx is the probability that x4 - -, lies in the
interval [,z + dz], while the probability that z,y; lies in the interval [0, a/#]
is simply a/x. This then accounts for the second term of eq. (21).
We next take the derivative of eq. (21) with respect to a. Then, two of the
resulting three terms on the right hand side of eq. (21) cancel, which yields

Prat = [ P, (22

with boundary condition of P{(z) = 1.1 We then compute the P/ successively
for n =1,2...; in general,

1 ! de  (—Ina)"~!
P/ — -~ —1 n—=2 27 = 23
nl@) (n—2)!/a ) = (23)
after changing the integration variable to y = —In«. Inserting this result into

eq. (21), we reproduce eq. (8), and the final result of eq. (9) once again follows.
[Alternatively, note that the result of eq. (23) is equivalent to eq. (19).]

Finally, we can make a connection to the first proof. Recall that eq. (4)
states that P,y1(a) = Py(a) 4+ aJ,(a). Using eq. (3), we can write:

1 1 1
Jn(a):/o d“/o ﬂ/o dx”@(xlxz...xn—a) (24)

Ln

1 1
xl/ dx?"'/ den d(x — x129 - 2p) (25)
x 0 0

1

and eq. (21) then follows. Note that the last step above [eq. (26)] follows
from eq. (11) [simply take the derivative to convert the ©-function into the
d-function]. Moreover, if one carries out the integration over x in eq. (25) by
using the §-function, one obtains eq. (24) since the argument of the J-function
vanishes inside the integration region ¢ < < 1 only if 2125 - -2, > a.
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Howard E. Haber
December 6, 1998

LClearly, Pi(z) = z for = € [0,1], since this is the probability that a randomly chosen
number from the interval [0,1] is less than z.



