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Abstract

The group theory of the spontaneous breaking of SU(N) is ex-
plored. Two specific cases are analyzed in detail: (i) SU(N) is broken
to SO(N) via a scalar field vacuum expectation value for a second-rank
symmetric tensor multiplet, and (ii) SU(2N) or SU(2N +1) is broken
to Sp(2N) via a scalar field vacuum expectation value for a second-
rank antisymmetric tensor multiplet. The case of the spontaneous
breaking of SO(2N) or SO(2N +1) to U(N) via a scalar field vacuum
expectation value for a second-rank antisymmetric tensor multiplet is
also treated.

1. Introduction

In these notes, I study the group theory of the spontaneous breaking of
a global SU(N)-symmetric field theory via a scalar field vacuum expectation
value for second-rank tensor multiplet, 〈Σ〉 ≡ Σ0. The cases of a symmetric
tensor and anti-symmetric tensor field are separately examined. I focus on
one particular symmetry breaking pattern in each case corresponding to the
maximal degeneracy of non-zero eigenvalues of Σ†

0Σ0. The case of sponta-
neous breaking of SO(2N) or SO(2N +1) to U(N) via a scalar field vacuum
expectation value for a second-rank antisymmetric tensor multiplet is very
similar to the corresponding breaking of SU(2N) or SU(2N +1). A previous
analysis of these (and other) cases can be found in ref. [1].
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2. Symmetry breaking via a second-rank symmetric
tensor

Let Σab be a symmetric second-rank tensor which transforms under SU(N)
as:

Σab −→ Ua
c U

b
dΣ

bd , (1)

where U is an N ×N unitary matrix with unit determinant. Equivalently, in
matrix form Σ −→ UΣUT , where UT is the transpose of U . Suppose that Σ is
a multiplet of scalar fields whose Lagrangian is invariant under global SU(N)
transformations. If Σ acquires a vacuum expectation value 〈Σ〉 ≡ Σ0, then
the SU(N) symmetry will be broken. If there exists a subgroup H of SU(N),
such that UΣ0U

T = U for all U ∈ H , then the global SU(N) symmetry is
spontaneously broken to H . Writing U = exp iθaTa where the Ta are the
unbroken generators (which span the unbroken subgroup H), it follows that
for infinitesimal θa,

(1 + iθaTa)Σ0(1 + iθaT
T

a
) = Σ0 , (2)

which implies that

TaΣ0 + Σ0T
T

a
= 0 . (3)

Thus, it is possible to find a basis for the traceless hermitian SU(N) gener-
ators given by {Ta, Xb} such that the Ta satisfy eq. (3). In this basis, the
broken generators Xb are orthogonal to the Ta, that is Tr (TaXb) = 0.

The identity of the unbroken subgroup H depends on the choice of Σ0

(which depends on the underlying dynamics responsible for the spontaneous
symmetry breaking). Here, I shall consider the case of H=SO(N), for which
the most general form for Σ0 is a complex symmetric N × N matrix that
satisfies Σ†

0Σ0 = Σ0Σ
†
0 = |c|2IN , where c ∈ C and IN is the N × N unit

matrix. This is summarized by the following theorem.
Theorem: Suppose that Σ0 is an N × N complex symmetric matrix

that satisfies Σ†
0Σ0 = Σ0Σ

†
0 = |c|2IN for some complex number c. Then,

if the generators of SU(N) in the defining (N -dimensional) representation
are given by {Ta, Xb}, where the Ta and Xb are traceless hermitian N × N
matrices that satisfy:

TaΣ0 + Σ0T
T

a
= 0 , (4)

XbΣ0 − Σ0X
T

b
= 0 , (5)
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then the Ta span an unbroken SO(N) Lie subalgebra, while the Xb are the
broken generators that span an SU(N)/SO(N) homogeneous space. Further-
more, Tr (TaXb) = 0.

Proof: First, I show that if Σ†
0Σ0 = Σ0Σ

†
0 = |c|2IN and TaΣ0+Σ0T

T

a
= 0,

then the Ta span an SO(N) Lie algebra. Note that these two conditions imply:

|c|2 T T

a
= −Σ†

0TaΣ0 . (6)

At this point, I note that the Takagi factorization [2, 3] for any complex
symmetric matrixM corresponds to the statement that there exists a unitary
matrix V such that VMV T is diagonal with non-negative entries given by
the positive square roots of the eigenvalues of MM † (or M †M). In our case,
this result implies that there exists a unitary matrix V such that1

V Σ0V
T = c IN . (7)

The inverse of this result is (V T )−1Σ†
0V

−1 = c∗ IN (since Σ†
0 = |c|2Σ−1

0 ). I now
define: T̃a ≡ V TaV

−1, where V is the unitary matrix appearing in eq. (7).
Then, inserting this result into eq. (6), it follows that:

T̃ T

a
=

−1

|c|2 (V
T )−1Σ†

0V
−1T̃aV Σ0V

T

= −T̃a . (8)

Likewise, one can use the same matrix V to define X̃ ≡ V XV −1. By an
analogous computation, |c|2XT = Σ†

0XΣ0, which implies that X̃T

b
= X̃b.

Moreover, since the generators of SU(N) are traceless and hermitian, it fol-
lows that the X̃b are also traceless and real.

Thus, I have exhibited a similarity transformation that transforms the
basis of the Lie algebra spanned by the Ta to one that is spanned by the T̃a.
Since the iT̃a are real antisymmetric matrices, one immediately recognizes
this Lie algebra as that of SO(N). If an arbitrary element of the unbroken
Lie algebra is exponentiated, it follows that exp iθaTa is related by a simi-
larity transformation to exp iθaT̃a. The latter consists of arbitrary N × N
real orthogonal matrices, which implies that the exp iθaTa constitutes an N

1Strictly speaking, the Takagi factorization yields a diagonal matrix with non-negative
diagonal elements. If c = |c|e2iξ, one can obtain Ṽ Σ0Ṽ

T = |c|IN by taking Ṽ = e
iξ
V .

However, this step is not necessary for the present argument.
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dimensional representation that is equivalent to the N -dimensional defining
representation of SO(N).

Finally, I note that from |c|2 T T

a
= −Σ†

0TaΣ0 and |c|2XT

b
= Σ†

0XbΣ0 it
follows that |c|2 T T

a
XT

b
= −Σ†

0TaXbΣ0 (since Σ†
0Σ0 = |c|2IN). Taking the

trace yields Tr TaXb = −Tr TaXb, or equivalently Tr TaXb = 0. To show
that the {Ta, Xb} span the full SU(N) Lie algebra, it is convenient to count
the number of independent generators after applying the similarity transfor-
mation that converts the {Ta, Xb} into {T̃a, X̃b}. I showed above that the
iT̃a are real antisymmetric matrices whereas the X̃b are traceless real sym-
metric matrices. This implies that there are 1

2
N(N − 1) independent T̃a and

1

2
N(N + 1)− 1 independent X̃b (the 1 is subtracted to account for the extra

condition that the X̃b are traceless). The total number of SU(N) generators
is therefore N2 − 1 as expected.

The above results are easily verified explicitly for N = 3. Consider for
example a case in which

Σ0 = c



0 0 1
0 1 0
1 0 0


 , (9)

which clearly satisfies Σ†
0Σ0 = Σ0Σ

†
0 = |c|2I. Using the Gell-Mann matrices

1

2
λa as the generators of SU(3), it is easy to check that TaΣ0 + Σ0T

T

a
= 0

implies that Ta = c1(λ1−λ6)+c2(λ2−λ7)+c3(λ3+
√
3λ8), where ci ∈ R. That

is, {1

2
(λ1 − λ6) ,

1

2
(λ2 − λ7) ,

1

2
(λ3 +

√
3λ8)} spans an SO(3) Lie subalgebra of

the SU(3) Lie algebra. This matrix representation corresponds to the adjoint
representation of an SU(2) subalgebra, which when exponentiated yields a
representation equivalent to the defining representation of SO(3).

3. Symmetry breaking of SU(2N) via a second-rank
antisymmetric tensor

The case of symmetry breaking via an antisymmetric tensor exhibits
many similar features. First, I shall consider the case of a global SU(2N)
symmetry group. Let Σab be an antisymmetric second-rank tensor which
transforms under SU(2N) as Σ −→ UΣUT , where U is a 2N × 2N unitary
matrix with unit determinant. If Σ acquires a vacuum expectation value
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〈Σ〉 ≡ Σ0, then the SU(2N) symmetry will be spontaneously broken. Writ-
ing U = exp iθaTa where the Ta are the unbroken generators, I again find

TaΣ0 + Σ0T
T

a
= 0 . (10)

Thus, it is possible to find a basis for the traceless hermitian SU(2N) gener-
ators given by {Ta, Xb} such that the Ta satisfy eq. (10) and Tr (TaXb) = 0.

The unbroken subgroup H depends on the choice of Σ0. Here, I shall
consider the case of H=Sp(2N), for which the most general form for Σ0

is a complex antisymmetric 2N × 2N matrix that satisfies Σ†
0Σ0 = Σ0Σ

†
0 =

|c|2I2N , where c ∈ C and I2N is the 2N×2N unit matrix. This is summarized
by the following theorem.

Theorem: Suppose that Σ0 is a 2N×2N complex antisymmetric matrix
that satisfies Σ†

0Σ0 = Σ0Σ
†
0 = |c|2I2N for some complex number c. Then,

if the generators of SU(2N) in the defining (2N -dimensional) representation
are given by {Ta, Xb}, where the Ta and Xb are traceless hermitian 2N × 2N
matrices that satisfy:

TaΣ0 + Σ0T
T

a
= 0 , (11)

XbΣ0 − Σ0X
T

b
= 0 , (12)

then the Ta span an unbroken Sp(2N) Lie subalgebra, while the Xb are
the broken generators that span an SU(2N)/Sp(2N) homogeneous space.
Furthermore, Tr (TaXb) = 0.

Proof: First, I show that if Σ†
0Σ0 = Σ0Σ

†
0 = |c|2I2N and TaΣ0+Σ0T

T

a
= 0,

then the Ta span an Sp(2N) Lie algebra. Note that these two conditions
imply:

|c|2 T T

a
= −Σ†

0TaΣ0 . (13)

For any even-dimensional complex antisymmetric matrix M , there exists
a unitary matrix W such that WMW T = diag(J1 ,J2 , . . . ,Jn) is block

diagonal, where each block is a 2×2 matrix of the form Jn ≡
(

0 zn

−zn 0

)
, where

zn ∈ C and the |zn|2 are the eigenvalues of MM † (or M †M).2 Applying this
result to Σ0, I note that the eigenvalues of Σ0Σ

†
0 are all degenerate and equal

2This result for complex antisymmetric matrices is the analog of the Takagi factoriza-
tion for symmetric matrices [4]. Moreover, it is always possible to find a suitable choice
for the unitary matrix W such that the zi are real and non-negative. However, this step
is not necessary for the present argument.
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to |c|2. Consider the matrix

J ≡
(

0 IN
−IN 0

)
, (14)

where IN is the N × N identity matrix. Since JJ† = I2N , it follows that
one can find unitary matrices W1 and W2 such that W1Σ0W

T

1
= cW2JW

T

2
=

diag(cJ , cJ , . . . , cJ ), where

J ≡
(

0 1
−1 0

)
. (15)

That is, the factorization of Σ0 and cJ both yield the same block diagonal
matrix consisting of N identical 2 × 2 blocks consisting of cJ . Thus, there
exists a unitary matrix V = W−1

2 W1 such that

V Σ0V
T = c J . (16)

The inverse of this result is (V T )−1Σ†
0V

−1 = −c∗ J (since Σ†
0 = |c|2Σ−1

0 and
J−1 = −J). I now define T̃a ≡ V TaV

−1, where V is the unitary matrix
appearing in eq. (16). Then, inserting this result into eq. (13), it follows
that:

T̃ T

a
=

−1

|c|2 (V
T )−1Σ†

0V
−1T̃aV Σ0V

T

= JT̃aJ . (17)

Likewise, one can use the same matrix V to define X̃b ≡ V XbV
−1. By an

analogous computation, |c|2XT = Σ†
0XΣ0, which implies that X̃T

b
= −JX̃bJ .

Thus, I have exhibited a similarity transformation that transforms the
basis of the Lie algebra spanned by the Ta to one that is spanned by the
T̃a. Since the T̃a are traceless hermitian matrices3 that satisfy T̃ T

a
= JT̃aJ

[where J is defined by eq. (14)], one immediately recognizes this Lie alge-
bra as that of Sp(2N).4 If an arbitrary element of the unbroken Lie algebra

3Since J
2 = −I2N , it follows from T̃

T
a = JT̃aJ that Tr Ta = 0. This implies that the

group theory for the breaking of U(2N) to Sp(2N) would work in almost precisely the
same way with one difference—the unbroken generators Xb would not be traceless.

4This is actually the unitary symplectic Lie algebra, which is the compact real form
of the complex symplectic Lie algebra. Some books use the notation Sp(N) where I have
used Sp(2N). For more details, see ref. [5].
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is exponentiated, it follows that exp iθaTa is related by a similarity trans-
formation to exp iθaT̃a. The latter consists of arbitrary 2N × 2N unitary
symplectic matrices, which implies that the exp iθaTa constitutes an 2N di-
mensional representation that is equivalent to the 2N -dimensional defining
representation of Sp(2N).

Finally, I note that from |c|2 T T

a
= −Σ†

0TaΣ0 and |c|2XT

b
= Σ†

0XbΣ0 it fol-
lows that |c|2 T T

a
XT

b
= Σ†

0TaXbΣ0 (since Σ†
0Σ0 = |c|2I2N ). Taking the trace

yields Tr TaXb = −Tr TaXb, or equivalently Tr TaXb = 0. To show that
the {Ta, Xb} span the full SU(2N) Lie algebra, it is convenient to count the
number of independent generators after applying the similarity transforma-
tion that converts the {Ta, Xb} into {T̃a, X̃b}. Since these are all SU(2N)
generators, they are traceless hermitian matrices. Moreover, I showed above
that the T̃a satisfy T̃a = JT̃aJ , whereas the X̃b are traceless and satisfy
X̃T

b
= −JX̃bJ . More explicitly,

T̃a =
(
A B
B† −AT

)
, X̃b =

(
C D
D† CT

)
, (18)

where A, B, C and D are N × N complex matrices such that A and C are
hermitian, B is symmetric, D is antisymmetric and Tr C = 0. Thus, the
number of independent real parameters that describe T̃a corresponds to the
number of parameters needed to define the hermitian matrix A and the com-
plex symmetric matrix B, which is equal to N2 + N(N + 1) = N(2N + 1).
Similarly, number of independent real parameters that describe X̃b corre-
sponds to the number of parameters needed to define the traceless hermi-
tian matrix C and the complex antisymmetric matrix D, which is equal to
N2−1+N(N+1) = N(2N−1)−1. The total number of SU(2N) generators
is therefore (2N)2 − 1 as expected.

4. Symmetry breaking of SU(2N + 1) via a second-rank
antisymmetric tensor

For the case of spontaneous breaking of an SU(2N + 1) global symmetry
by a second-rank antisymmetric tensor field, the analysis of the previous
section requires some modification. In this case, Σ is a (2N + 1)× (2N + 1)
matrix, which acquires a vacuum expectation value Σ0. Once again, the
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unbroken generators Ta satisfy:

TaΣ0 + Σ0T
T

a
= 0 . (19)

In this case, one can find a basis for the traceless hermitian SU(2N+1) gener-
ators given by {Ta, Xb, Yc} such that the Ta satisfy eq. (19) and Tr (TaXb) =
Tr (TaYc) = Tr (XbYc) = 0.

I shall identify the unbroken subgroup H under the assumption that Σ0

satisfies:

Σ†
0Σ0 = Σ0Σ

†
0 = |c|2

(
I2N 0
0 0

)
, (20)

where c ∈ C. In this case, H = Sp(2N). This is summarized by the following
theorem.

Theorem: Suppose that Σ0 is a (2N + 1)× (2N + 1) complex antisym-
metric matrix that satisfies eq. (20) for some complex number c. Then, if
the generators of SU(2N + 1) in the defining [(2N + 1)-dimensional] repre-
sentation are given by {Ta, Xb, Yc}, where the Ta, Xb and Yc are traceless
hermitian (2N + 1)× (2N + 1) matrices that satisfy:

TaΣ0 + Σ0T
T

a
= 0 , (21)

XbΣ0 − Σ0X
T

b
= 0 , (22)

Σ†
0YcΣ0 = 0 , (23)

then the Ta span an unbroken Sp(2N) Lie subalgebra, while the {Xb, Yc} are
the broken generators that span an SU(2N +1)/Sp(2N) homogeneous space.
Furthermore, Tr (TaXb) = Tr (TaYc) = Tr (XbYc) = 0.

Proof: First, I show that if Σ0 satisfies eq. (20) and TaΣ0 + Σ0T
T

a
= 0,

then the Ta span an Sp(2N) Lie algebra. Here, I note that for any odd-
dimensional complex antisymmetric matrix M , there exists a unitary matrix
W such that WMW T = diag(J1 ,J2 , . . . ,JN , 0) where Jn ≡

(
0 zn

−zn 0

)
, with

zn ∈ C and the |zn|2 are the eigenvalues of MM † (or M †M) [4]. Introduce
the (2N + 1)× (2N + 1) matrix:

K ≡
(
J 0
0 0

)
, (24)

where J is the 2N × 2N matrix given by eq. (14). The zeros shown above
fill out the last row and the last column of the matrix K. Then applying the
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above factorization to the antisymmetric matrices Σ0 and K, it follows that
there exists a unitary matrix V such that

V Σ0V
T = cK . (25)

Next, I multiply eq. (19) on the left by V and the right by V T . Defining
T̃a ≡ V TaV

−1 as before and using eq. (25), one easily derives:

KT̃ T

a
= −T̃aK . (26)

Using the fact that T̃a is traceless and hermitian, eq. (26) has a unique
solution:

T̃a =
(
ta 0
0 0

)
, (27)

where ta is an 2N ×2N hermitian matrix that satisfies tT
a
= JtaJ . Thus, the

T̃a span an Sp(2N) Lie subalgebra of the SU(2N + 1) Lie algebra.
Consider next the unbroken generators Xb and Yc, which satisfy eqs. (22)

and (23), and define X̃b ≡ V XbV
−1 and Ỹc ≡ V YcV

−1 Then eq. (25) implies
that

KX̃T

b
= X̃bK , K†ỸcK = 0 . (28)

Using the fact that X̃b and Ỹc are traceless and hermitian, eq. (28) has a
unique solution:

X̃b =
(
xb 0
0 −Tr xb

)
, Ỹc =

(
0 yc
y†
c

0

)
, (29)

where xb is an 2N × 2N hermitian matrix that satisfies xT

b
= −JxbJ , and yc

is a complex 2N -dimensional column vector. From the explicit forms above,
it is easy to check that Tr (T̃aX̃b) = Tr (T̃aỸc) = Tr (X̃bỸc) = 0, which implies
that Tr (TaXb) = Tr (TaYc) = Tr (XbYc) = 0.

To show that the {Ta, Xb, Yc} span the full SU(2N + 1) Lie algebra, it
is convenient to count the number of independent generators after applying
the similarity transformation that converts the {Ta, Xb, Yc} into {T̃a, X̃b, Ỹc}.
Since these are all SU(2N+1) generators, they are traceless hermitian matri-
ces. Moreover, I showed above that the T̃a, X̃b and Ỹc are given by eqs. (27)
and (29), where tT

a
= JtaJ and xT

b
= −JxbJ are 2N×2N hermitian matrices

and yc is a complex 2N -dimensional vector. However, in contrast to X̃b in
the last section, xb is not traceless. Following the analysis at the end of the
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previous section (but with Tr xb 6= 0), it follows that the number of inde-
pendent real parameters that describe T̃a and X̃b is given by N(2N +1) and
N(2N − 1), respectively. Adding this to the 4N parameters that describe Ỹc

yields a total number of SU(2N + 1) generators equal to (2N + 1)2 − 1 as
expected.

Finally, it is interesting to note that the generators of the type Yc do
not appear in the breaking of SU(2N) to Sp(2N) described in the previous
section. This is easy to see by noting that in the previous section, Σ†

0Σ0 =
|c|2I2N implies that Σ−1

0 exists. Thus, in this case Σ†
0YcΣ0 = 0 would imply

that Yc = 0. In the case of SU(2N + 1) breaking, since Σ0 is an odd-
dimensional antisymmetric matrix, it follows that det Σ0 = 0. Thus, Σ−1

0 does
not exist and an non-trivial solution for Yc can arise, as we have explicitly
shown above.

5. Symmetry breaking of SO(2N) and SO(2N + 1) via a
second-rank antisymmetric tensor

The case of spontaneous breaking of SO(2N) or SO(2N + 1) to U(N)
via a scalar field vacuum expectation value for a second-rank antisymmetric
tensor multiplet is very similar to the corresponding breaking of SU(2N) or
SU(2N +1) considered in the previous two sections. Thus, we provide a few
details here. In the case of SO(2N) the relevant theorem is as follows.

Theorem: Suppose that Σ0 is a 2N × 2N real antisymmetric matrix
that satisfies ΣT

0
Σ0 = Σ0Σ

T

0
= c2I2N for some real number c. Then, if the

generators of SO(2N) in the defining (2N -dimensional) representation are
given by {Ta, Xb}, where the iTa and iXb are real antisymmetric 2N × 2N
matrices that satisfy:

TaΣ0 + Σ0T
T

a
= 0 , (30)

XbΣ0 − Σ0X
T

b
= 0 , (31)

then the Ta span an unbroken U(N) Lie subalgebra, while the Xb are the
broken generators that span an SO(2N)/U(N) homogeneous space. Further-
more, Tr (TaXb) = 0.

Proof: First, I show that if ΣT

0
Σ0 = Σ0Σ

T

0
= c2I2N and TaΣ0+Σ0T

T

a
= 0,

then the Ta span an U(N) Lie subalgebra. Note that these two conditions
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imply:
c2 T T

a
= −ΣT

0
TaΣ0 . (32)

For any even-dimensional real antisymmetric matrix M , there exists a real
orthogonal matrix W such that WMW T = diag(J1 ,J2 , . . . ,Jn) is block

diagonal, where each block is a 2×2 matrix of the form Jn ≡
(

0 zn

−zn 0

)
, where

zn ∈ R and the z2
n
are the eigenvalues of MMT (or MTM).5 Applying this

result to Σ0, note that the eigenvalues of Σ0Σ
T

0
are all degenerate and equal

to c2. Moreover, since the matrix J [eq. (14)] satisfies JJT = I2N , it follows
that one can find real orthogonal matrices W1 and W2 such that W1Σ0W

T

1
=

cW2JW
T

2
= diag(cJ , cJ , . . . , cJ ), where J is defined in eq. (15). That is,

the factorization of Σ0 and cJ both yield the same block diagonal matrix
consisting of N identical 2 × 2 blocks consisting of cJ . Thus, there exists a
real orthogonal matrix V = W−1

2 W1 such that V Σ0V
T = c J . The inverse of

this result is V ΣT

0
V T = −c J (since JT = −J). I now define T̃a ≡ V TaV

T .
Then eq. (32) implies that

T̃ T

a
=

−1

c2
V ΣT

0
V T T̃aV Σ0V

T = JT̃aJ . (33)

Likewise, one can use the same matrix V to define X̃b ≡ V XbV
T . By an

analogous computation, c2XT = ΣT

0
XΣ0, which implies that X̃T

b
= −JX̃bJ .

Recall that that Ta and Xb are both antisymmetric 2N × 2N matrices.
Then, T̃a ≡ V TaV

T and X̃a ≡ V XaV
T are also antisymmetric. Hence, it

follows that
T̃a = −JT̃aJ , X̃a = JX̃aJ . (34)

Using the explicit form for J , eq. (34) implies that Ta and Xb take the
following block form:

i T̃a =
(

A B
−B A

)
, iX̃b =

(
C D
D −C

)
, (35)

where A, B, C and D are N × N real matrices such that A, C and D
are antisymmetric and B is symmetric. Thus, I have exhibited a similarity
transformation (note that V T = V −1) that transforms the basis of the Lie
algebra spanned by the Ta to one that is spanned by the T̃a. Moreover,
consider the isomorphism that maps i T̃a given in eq. (35) to the N × N

5This result for real antisymmetric matrices is the analog of the corresponding factor-
ization of complex antisymmetric matrices quoted in Section 3.
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matrix A + iB. Since (A + iB)† = (A − iB)T = −(A + iB), we see that
the A+ iB are anti-hermitian generators (which are not generally traceless)
that span a U(N) subalgebra of the SO(2N). We can check the number of
unbroken generators by counting the number of degrees of freedom of one real
antisymmetric and one real symmetric matrix: 1

2
N(N−1)+ 1

2
N(N+1) = N2,

as expected.
Finally, I note that from c2 T T

a
= −ΣT

0
TaΣ0 and c2XT

b
= ΣT

0
XbΣ0 it fol-

lows that c2 T T

a
XT

b
= ΣT

0
TaXbΣ0 (since ΣT

0
Σ0 = c2I2N ). Taking the trace

yields Tr TaXb = −Tr TaXb, or equivalently Tr TaXb = 0. To show that the
{Ta, Xb} span the full SO(2N) Lie algebra, we note that there are N2 unbro-
ken generators and N(N − 1) broken generators (corresponding to the num-
ber of parameters describing two real antisymmetric matrices [see eq. (35)]).
Thus, the total number of generators is N(2N − 1) which matches the total
number of SO(2N) generators.

Finally, we turn to the case of SO(2N + 1) breaking. In this case, we
will make use of the fact that for any odd-dimensional real antisymmetric
matrix M , there exists a real orthogonal matrix W such that WMW T =
diag(J1 ,J2 , . . . ,JN , 0) where Jn ≡

(
0 zn

−zn 0

)
, with zn ∈ R and the z2

n
are the

eigenvalues ofMMT (orMTM). The relevant theorem for case of SO(2N+1)
is as follows.

Theorem: Suppose that Σ0 is a (2N +1)× (2N +1) real antisymmetric
matrix that satisfies

ΣT

0
Σ0 = Σ0Σ

T

0
= c2

(
I2N 0
0 0

)
, (36)

where c ∈ R. Then, if the generators of SO(2N+1) in the defining [(2N+1)-
dimensional] representation are given by {Ta, Xb, Yc}, where the iTa, iXb and
iYc are real antisymmetric (2N + 1)× (2N + 1) matrices that satisfy:

TaΣ0 + Σ0T
T

a
= 0 , (37)

XbΣ0 − Σ0X
T

b
= 0 , (38)

ΣT

0
YcΣ0 = 0 , (39)

then the Ta span an unbroken U(N) Lie subalgebra, while the {Xb, Yc} are
the broken generators that span an SO(2N + 1)/U(N) homogeneous space.
Furthermore, Tr (TaXb) = Tr (TaYc) = Tr (XbYc) = 0.

Proof: Here, I shall only sketch the modifications to the proof given in
Section 4. Again, we easily derive KT̃ T

a
= −T̃aK [where K is defined in
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eq. (24)]. In the present case, we use the fact that T̃a is antisymmetric to
conclude that KT̃a = T̃aK. That is, we may write the unbroken generators,
T̃a, in the form of eq. (27) where ta = −JtaJ and the ita are 2N × 2N real
antisymmetric matrices. Using the results previously obtained, it follows
that the T̃a span a U(N) subalgebra. Likewise, the broken generators satisfy:
KX̃a = −X̃aK and KT ỸcK = 0. The antisymmetry of X̃a and Ỹa implies

iX̃b =
(
xb 0
0 0

)
, iỸc =

(
0 yc

−yT
c

0

)
, (40)

where xb is an 2N × 2N real antisymmetric matrix that satisfies xb = JxbJ ,
and yc is a real 2N -dimensional column vector. From the explicit forms
above, it is easy to check that Tr (T̃aX̃b) = Tr (T̃aỸc) = Tr (X̃bỸc) = 0, which
implies that Tr (TaXb) = Tr (TaYc) = Tr (XbYc) = 0.

Finally, we count the number of SO(2N + 1) generators {T̃a, X̃b, Ỹc}.
There are N2 unbroken generators and N(N + 1) degrees of freedom associ-
ated with X̃b as in the case of SO(2N) breaking. Finally, adding in the 2N
parameters that describes Ỹc yields a total number of SO(2N +1) generators
equal to N(2N + 1) as expected.
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