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Abstract

In these notes, the vector spherical harmonics are presented in a general context, which
provides for a better understanding of their origin (and allows for further generalizations).
The formalism of addition of angular momentum in quantum mechanics plays a key role
in this general treatment. In the final section of these notes, the application of vector
spherical harmonics to the electromagnetic multipole radiation fields is exhibited.

1 The Clebsch-Gordon coefficients

Consider a system with orbital angular momentum ~L and spin angular momentum ~S. The total
angular momentum of the system is denoted by ~J = ~L + ~S. Clebsch Gordon coefficients allow
us to express the total angular momentum basis |j m ; ℓ s〉 in terms of the direct product basis,
|ℓmℓ ; sms〉 ≡ |ℓmℓ〉 ⊗ |sms〉,

|j m ; ℓ s〉 =
ℓ

∑

mℓ=−ℓ

s
∑

ms=−s

〈ℓmℓ ; sms | j m ; ℓ s〉|ℓmℓ ; sms〉 . (1)

The Clebsch-Gordon coefficient is often denoted by (cf. pp. 412–415 of Ref. [1]):

〈ℓmℓ ; sms | j m〉 ≡ 〈ℓmℓ ; sms | j m ; ℓ s〉 ,
since including ℓ s in |j m ; ℓ s〉 on the right hand side above is redundant information.

One important property of the Clebsch-Gordon coefficients is

〈ℓmℓ ; sms | j m〉 = δm,mℓ+ms
〈ℓmℓ ; s ms | j mℓ +ms〉 . (2)

In particular, if m 6= mℓ +ms then the corresponding Clebsch-Gordon coefficient must vanish.
This is simply a consequence of Jz = Lz + Sz. Likewise, |ℓ− s| ≤ j ≤ ℓ+ s (where 2j, ℓ and 2s
are non-negative integers), otherwise the corresponding Clebsch-Gordon coefficients vanish.

Recall that in the coordinate representation, the angular moment operator in quantum me-
chanics is a differential operator given by

~L = −i~ ~x× ~∇ .

The spherical harmonics, Yℓmℓ
(θ, φ) are simultaneous eigenstates of ~L2 and Lz,

~L2 Yℓmℓ
(θ, φ) = ~

2ℓ(ℓ+ 1) Yℓmℓ
(θ, φ) , Lz Yℓmℓ

(θ, φ) = ~mℓ Yℓmℓ
(θ, φ) . (3)

We can generalize these results to systems with non-zero spin. First, we define χsms
to be the

simultaneous eigenstates of ~S2 and Sz ,

~S2χsms
= ~

2s(s+ 1)χsms
, Szχsms

= ~msχsms
.

The direct product basis in the coordinate representation is given by Yℓmℓ
(θ, φ)χsms

.
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2 Definition of the tensor spherical harmonics

In the coordinate representation, the total angular momentum basis consists of simultaneous
eigenstates of ~J2 , Jz , ~L

2 , ~S2. These are the tensor spherical harmonics, which satisfy,

~J2 Yℓs
jm(θ, φ) = ~

2j(j + 1)Yℓs
jm(θ, φ) , Jz Yℓs

jm(θ, φ) = ~mYℓs
jm(θ, φ) ,

~L2 Yℓs
jm(θ, φ) = ~

2ℓ(ℓ+ 1)Yℓs
jm(θ, φ) ,

~S2 Yℓs
jm(θ, φ) = ~

2s(s+ 1)Yℓs
jm(θ, φ) .

As a consequence of eq. (1), the tensor spherical harmonics are defined by

Yℓs
jm(θ, φ) =

ℓ
∑

mℓ=−ℓ

s
∑

ms=−s

〈ℓmℓ ; sms | j m〉Yℓmℓ
(θ, φ)χsms

=
s

∑

ms=−s

〈ℓ , m−ms ; sms | j m〉Yℓ ,m−ms
(θ, φ)χsms

, (4)

where the second line follows from the first line above since the Clebsch-Gordon coefficient above
vanishes unless m = mℓ +ms.

The general expressions for the Clebsch-Gordon coefficients in terms of j, mℓ, ℓ, s and ms

are very complicated to write down. Nevertheless, the explicit expressions in the simplest cases
of s = 1/2 and s = 1 are manageable. Thus, we shall exhibit these two special cases below.

3 The spinor spherical harmonics

For spin s = 1/2, the possible values of j are j = ℓ + 1
2
and ℓ − 1

2
, for ℓ = 1, 2, 3, . . . . If ℓ = 0

then only j = 1
2
is possible (and the last row of Table 1 should be omitted). The corresponding

table of Clebsch-Gordon coefficients is exhibited in Table 1.

Table 1: the Clebsch-Gordon coefficients, 〈ℓm−ms ;
1
2
ms | jm〉.

j ms =
1
2

ms = −1
2

ℓ+ 1
2

(

ℓ+m+ 1
2

2ℓ+ 1

)1/2 (

ℓ−m+ 1
2

2ℓ+ 1

)1/2

ℓ− 1
2

−
(

ℓ−m+ 1
2

2ℓ+ 1

)1/2 (

ℓ +m+ 1
2

2ℓ+ 1

)1/2

Comparing with eq. (4), the entries in Table 1 are equivalent to the following result:

∣

∣

∣
j = ℓ± 1

2
m
〉

=
1√

2ℓ+ 1

[

±
√

ℓ+ 1
2
±m

∣

∣

∣
ℓm− 1

2
; 1

2
1
2

〉

+
√

ℓ + 1
2
∓m

∣

∣

∣
ℓm+ 1

2
; 1

2
− 1

2

〉

]

.
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We can represent |1
2

1
2
〉 = ( 1

0 ) and |1
2
− 1

2
〉 = ( 0

1 ). Then in the coordinate representation, the
spin spherical harmonics are given by

Yℓ 1

2

j=ℓ± 1
2

,m
(θ, φ) ≡ 〈θ φ | j = ℓ± 1

2
, m〉 = 1√

2ℓ+ 1







±
√

ℓ±m+ 1
2
Yℓ,m− 1

2
(θ, φ)

√

ℓ∓m+ 1
2
Yℓ,m+ 1

2
(θ, φ)






. (5)

If ℓ = 0, there is only one spin spherical harmonic,

Y0 1

2

j= 1

2
, m
(θ, φ) ≡ 〈θ φ | j = 1

2
, m〉 = 1√

2ℓ+ 1







√

1
2
+m Y0,m− 1

2
(θ, φ)

√

1
2
−m Y0,m+ 1

2
(θ, φ)






. (6)

Note that when m = 1
2
the lower component of eq. (6) vanishes and when m = −1

2
the upper

component of eq. (6) vanishes. In both cases, the non-vanishing component is proportional to
Y00(θ, φ) = 1/

√
4π.

4 The vector spherical harmonics

For spin s = 1, the possible values of j are j = ℓ + 1 , ℓ , ℓ− 1 for ℓ = 1, 2, 3, . . .. If ℓ = 0 then
only j = 1 is possible (and the last two rows exhibited in Table 2 should be omitted). The
corresponding table of Clebsch-Gordon coefficients is exhibited in Table 2.

Table 2: the Clebsch-Gordon coefficients, 〈ℓm−ms ; 1ms | jm〉.

j ms = 1 ms = 0 ms = −1

ℓ+ 1

[

(ℓ+m)(ℓ +m+ 1)

(2ℓ+ 1)(2ℓ+ 2)

]1/2 [

(ℓ−m+ 1)(ℓ+m+ 1)

(ℓ+ 1)(2ℓ+ 1)

]1/2 [

(ℓ−m)(ℓ−m+ 1)

(2ℓ+ 1)(2ℓ+ 2)

]1/2

ℓ −
[

(ℓ+m)(ℓ−m+ 1)

2ℓ(ℓ+ 1)

]1/2
m

√

ℓ(ℓ+ 1)

[

(ℓ−m)(ℓ+m+ 1)

2ℓ(ℓ+ 1)

]1/2

ℓ− 1

[

(ℓ−m)(ℓ−m+ 1)

2ℓ(2ℓ+ 1)

]1/2

−
[

(ℓ−m)(ℓ+m)

ℓ(2ℓ+ 1)

]1/2 [

(ℓ+m)(ℓ+m+ 1)

2ℓ(2ℓ+ 1)

]1/2

Using a spherical basis, we can represent |1 1〉 =
(

1
0
0

)

, |1 0〉 =
(

0
1
0

)

and |1 − 1〉 =
(

0
0
1

)

.

With respect to this basis, we can explicitly write out the three vector spherical harmonics,
Yℓ 1

j=ℓ±1 ,m(θ, φ) and Yℓ 1
j=ℓ ,m(θ, φ). For example, if ℓ 6= 0 then,
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Yℓ 1
j=ℓ ,m(θ, φ) =





















−
[

(ℓ−m+ 1)(ℓ+m)

2ℓ(ℓ+ 1)

]1/2

Yℓ,m−1(θ, φ)

m
√

ℓ(ℓ+ 1)
Yℓm(θ, φ)

[

(ℓ+m+ 1)(ℓ−m)

2ℓ(ℓ+ 1)

]1/2

Yℓ,m+1(θ, φ)





















.

The other two vector spherical harmonics can be written out in a similar fashion. If ℓ = 0 then
Yℓ 1

j=ℓ+1 ,m(θ, φ) is the only surviving vector spherical harmonic.
It is instructive to work in a Cartesian basis, where the χ1,ms

are eigenvectors of S3, and the

spin-1 spin matrices are given by ~ ~S, where (Sk)ij = −iǫijk. In particular,

S3 =





0 −i 0
i 0 0
0 0 0



 .

and S3χ1,ms
= msχ1,ms

. This yields the orthonormal eigenvectors,

χ1,±1 =
1√
2





∓1
−i
0



 , χ1,0 =





0
0
1



 . (7)

where the arbitrary overall phase factors are conventionally chosen to be unity. As an example,
in the Cartesian basis,

Yℓ 1
j=ℓ ,m(θ, φ) =

1

2
√

ℓ(ℓ+ 1)











[(ℓ−m+ 1)(ℓ+m)]1/2 Yℓ,m−1(θ, φ) + [(ℓ+m+ 1)(ℓ−m)]1/2 Yℓ,m+1(θ, φ)

i [(ℓ−m+ 1)(ℓ+m)]1/2 Yℓ,m−1(θ, φ)− i [(ℓ+m+ 1)(ℓ−m)]1/2 Yℓ,m+1(θ, φ)

2mYℓm(θ, φ)











.

(8)
This is a vector with respect to the basis {x̂ , ŷ , ẑ}. It is convenient to rewrite eq. (8) in terms
of the basis

{

r̂ , θ̂ , φ̂
}

using

x̂ = r̂ sin θ cosφ+ θ̂ cos θ cosφ− φ̂ sin φ ,

ŷ = r̂ sin θ sinφ+ θ̂ cos θ sinφ+ φ̂ cosφ ,

ẑ = r̂ cos θ − θ̂ sin θ .

We can then greatly simplify the resulting expression for Yℓ 1
j=ℓ ,m(θ, φ) by employing the recursion

relation,

−2m cos θ Yℓm(θ, φ) = sin θ

{

[(ℓ+m+ 1)(ℓ−m)]1/2 e−iφ Yℓ,m+1(θ, φ)

+ [(ℓ−m+ 1)(ℓ+m)]1/2 eiφ Yℓ,m−1(θ, φ)

}

,
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and the following two differential relations,

∂

∂φ
Yℓm(θ, φ) = imYℓm(θ, φ) ,

∂

∂θ
Yℓm(θ, φ) =

1
2
[(ℓ+m+ 1)(ℓ−m)]1/2 e−iφ Yℓ,m+1(θ, φ)

−1
2
[(ℓ−m+ 1)(ℓ+m)]1/2 eiφ Yℓ,m−1(θ, φ) .

Following a straightforward but tedious computation, the end result is:

Yℓ 1
j=ℓ ,m(θ, φ) =

i
√

ℓ(ℓ+ 1)

[

θ̂

sin θ

∂

∂φ
Yℓm(θ, φ)− φ̂

∂

∂θ
Yℓm(θ, φ)

]

.

At this point, one should recognize the differential operator ~L expressed in the
{

r̂ , θ̂ , φ̂
}

basis,

~L = −i~ ~x× ~∇ = i~

[

θ̂

sin θ

∂

∂φ
− φ̂

∂

∂θ

]

. (9)

Hence, we end up with

Yℓ 1
j=ℓ ,m(θ, φ) =

1
√

~2ℓ(ℓ+ 1)
~LYℓm(θ, φ) , for ℓ 6= 0 . (10)

This is the vector spherical harmonic,

~Xℓm(θ, φ) =
−i

√

ℓ(ℓ+ 1)
~x× ~∇Yℓm(θ, φ) (11)

employed by J.D. Jackson in Ref. [14]. Note that eq. (11) satisfies the following relation:

~∇· ~Xℓm(θ, φ) = 0 . (12)

To prove eq. (12), we compute

~∇·
[

~x× ~∇Yℓm(θ, φ)
]

= ǫijk∂i
[

xj∂k Yℓm(θ, φ)
]

= 0 , (13)

where there is an implicit sum over pairs of repeated indices and ∂i ≡ ∂/∂xi. The final result
of eq. (13) is obtained after noting that ∂ixj = δij and employing ǫijkδij = 0 and ǫijk∂i∂k = 0.
These last two relations follow since a symmetric tensor summed against an antisymmetric
tensor vanishes.

Using the same methods, one can derive the following expressions for the other two vector
spherical harmonics,

Yℓ 1
j=ℓ−1 ,m(θ, φ) =

−1
√

(j + 1)(2j + 1)

[

(j + 1)n̂− r~∇
]

Yjm(θ, φ) , for ℓ 6= 0 , (14)

Yℓ 1
j=ℓ+1 ,m(θ, φ) =

1
√

j(2j + 1)

[

jn̂+ r~∇
]

Yjm(θ, φ) , (15)

5



where n̂ ≡ r̂ = ~x/r. That is, the three independent normalized vector spherical harmonics can
be chosen as:

{ −ir
√

j(j + 1)
n̂× ~∇Yjm(θ, φ) ,

r
√

j(j + 1)
~∇Yjm(θ, φ) , n̂Yjm(θ, φ)

}

. (16)

It is often convenient to rewrite

r ~∇Yjm(θ, φ) = −r[n̂(n̂· ~∇)− ~∇]Yjm(θ, φ) = −r n̂× (n̂× ~∇)Yjm(θ, φ) , (17)

after noting that

n̂· ~∇Yjm(θ, φ) =
∂Yjm(θ, φ)

∂r
= 0 .

Then, the list of the three independent normalized vector spherical harmonics takes the following
form:

{ −ir
√

j(j + 1)
n̂× ~∇Yjm(θ, φ) ,

−r
√

j(j + 1)
n̂× (n̂× ~∇)Yjm(θ, φ) , n̂ Yjm(θ, φ)

}

. (18)

The first two vector spherical harmonics, n̂ × ~∇Yjm(θ, φ) and n̂ × (n̂ × ~∇)Yjm(θ, φ), are
transverse (i.e., perpendicular to n̂), whereas the third vector spherical harmonic, n̂ Yjm(θ, φ),
is longitudinal (i.e., parallel to n̂). In particular, when employed in the multipole expansion of
the (transverse) electric and magnetic radiation fields in the radiation zone, only the first two
vector spherical harmonics of eq. (18) appear (cf. Section 6).

Note that the second and third vector spherical harmonics listed in eq. (16) [or eq. (18)],

r~∇Yjm(θ, φ) and n̂ Yjm(θ, φ), are not eigenstates of ~L
2 since they consist of linear combinations

of states with ℓ = j ± 1 [which can be explicitly derived by inverting eqs. (14) and (15)]. This
observation will be confirmed in eqs. (35) and (44) below.

The algebraic steps involved in establishing eqs. (10)–(15) are straightforward but tedious.
A more streamlined approach to the derivation of these results is given in the next section.

5 The vector spherical harmonics revisited

Since Yℓm(n̂) is a spherical tensor of rank-ℓ, and n̂ ≡ ~x/r, ~L ≡ −i~~x× ~∇, and r~∇ are vector
operators, it is not surprising that the vector spherical harmonics are linear combinations of the
quantities given in eq. (16). It is instructive to derive this result directly. For convenience, we
shall adopt the notation of Ref. [12] by denoting the vector spherical harmonics in this section by

~Y jℓm(n̂) ≡ Yℓ 1
j m(θ, φ) , for j = ℓ+ 1 , ℓ , ℓ− 1 , (19)

where n̂ is a unit vector with polar angle θ and azimuthal angle φ.
First, we recall that (e.g., see eq. (12.5.20) of Ref. [1]):

L±|ℓm〉 = ~ [(ℓ∓m)(ℓ±m+ 1)]1/2 |ℓm± 1〉 , Lz|ℓm〉 = ~m|ℓm〉 , (20)

where L± ≡ Lx ± iLy. The spherical components of ~L are Lq (q = +1, 0,−1) where

L±1 ≡ ∓L±√
2
= ∓ 1√

2
(Lx ± iLy) , L0 ≡ Lz .
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Using the Clebsch-Gordon coefficients given in Table 2, it follows that

Lq|ℓm〉 = ~(−1)q
√

ℓ(ℓ+ 1) 〈ℓ , m+ q ; 1 , −q | ℓm〉 |ℓ , m+ q〉 . (21)

In the coordinate representation, eq. (21) is equivalent to

Lq Yℓm(n̂) = ~(−1)q
√

ℓ(ℓ+ 1) 〈ℓ , m+ q ; 1 , −q | ℓm〉 Yℓ ,m+q(n̂) . (22)

It is convenient to introduce a set of spherical basis vectors,

ê±1 ≡ ∓ 1√
2
(x̂± iŷ) , ê0 ≡ ẑ . (23)

It is not surprising that êq = χ1,q [cf. eq. (7)]. One can check that

~L = Lxx̂+ Lyŷ + Lzẑ =
∑

q

(−1)qLqê−q , (24)

where the sum over q runs over q = −1, 0,+1.1 Hence, eqs. (22) and (24) yield

~LYℓm(n̂) = ~

√

ℓ(ℓ+ 1)
∑

q

ê−q〈ℓ , m+ q ; 1 , −q | ℓm〉 Yℓ ,m+q(n̂) .

Since the sum is taken over q = −1, 0, 1, we are free to relabel q → −q. Writing êq = χ1,q, we
end up with

~LYℓm(n̂) = ~

√

ℓ(ℓ+ 1)
∑

q

〈ℓ , m− q ; 1 , q | ℓm〉 Yℓ ,m−q(n̂)χ1 q .

Comparing with eq. (4) for s = 1, it follows that [in the notation of eq. (19)]:

~LYℓm(n̂) = ~

√

ℓ(ℓ+ 1) ~Y ℓℓm(n̂) (25)

in agreement with eq. (10).
Next, we examine n̂Yℓm(n̂). It is convenient to expand n̂ ≡ ~x/r in a spherical basis. Using

eq. (23), the following expression is an identity,

n̂ = x̂ sin θ cos φ+ ŷ sin θ sinφ+ ẑ cos θ =

√

4π

3

∑

q

(−1)q Y1q(n̂) ê−q . (26)

Hence,

n̂Yℓm(n̂) =

√

4π

3

∑

q

(−1)q Y1q(n̂)Yℓm(n̂) ê−q . (27)

Using eq. (88) given in Appendix A, it follows that

Y1q(n̂)Yℓm(n̂) =

√

3(2ℓ+ 1)

4π

∑

ℓ ′

1√
2ℓ ′ + 1

〈ℓm ; 1 q | ℓ ′ , m+ q〉〈ℓ 0 ; 1 0 | ℓ ′ 0〉 Yℓ ′ ,m+q(n̂) ,

(28)

1Henceforth, if left unspecified, sums over q will run over q = −1, 0,+1.
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Only two terms, corresponding to ℓ ′ = ℓ±1, can contribute to the sum over ℓ ′ since [cf. Table 2]:

〈ℓ 0 ; 1 0 | ℓ ′ 0〉 =



































(

ℓ+ 1

2ℓ+ 1

)1/2

, for ℓ ′ = ℓ+ 1 ,

0 , for ℓ ′ 6= ℓ± 1 ,

−
(

ℓ

2ℓ+ 1

)1/2

, for ℓ ′ = ℓ− 1 .

(29)

Inserting eq. (28) on the right hand side of eq. (27) and employing eq. (29) then yields

n̂Yℓm(n̂) =
∑

q

(−1)q ê−q

{(

ℓ+ 1

2ℓ+ 3

)1/2

〈ℓm ; 1 q | ℓ+ 1 , m+ q〉 Yℓ+1 ,m+q(n̂)

−
(

ℓ

2ℓ− 1

)1/2

〈ℓm ; 1 q | ℓ+ 1 , m+ q〉 Yℓ−1 ,m+q(n̂)

}

. (30)

It is convenient to rewrite eq. (30) with the help of the following two relations, which can be
obtained from Table 2,

〈ℓm ; 1 q | ℓ+ 1 , m+ q〉 = −(−1)q
(

2ℓ+ 3

2ℓ+ 1

)1/2

〈ℓ+ 1 , m+ q ; 1 , −q | ℓm〉 , (31)

〈ℓm ; 1 q | ℓ− 1 , m+ q〉 = −(−1)q
(

2ℓ− 1

2ℓ+ 1

)1/2

〈ℓ− 1 , m+ q ; 1 , −q | ℓm〉 . (32)

The end result is:

n̂Yℓm(n̂) = −
∑

q

ê−q

{(

ℓ+ 1

2ℓ+ 1

)1/2

〈ℓ+ 1 , m+ q ; 1 , −q | ℓm〉 Yℓ+1 , m+q(n̂)

−
(

ℓ

2ℓ+ 1

)1/2

〈ℓ− 1 , m+ q ; 1 , −q | ℓm〉 Yℓ−1 , m+q(n̂)

}

. (33)

Using eq. (4) with s = 1 and χ1 q = êq and employing the notation of eq. (19), it follows that

~Y ℓ , ℓ±1 ,m(n̂) =
∑

q

ê−q 〈ℓ± 1 , m+ q ; 1 , −q | ℓm〉 Yℓ±1 ,m+q(n̂) , (34)

after relabeling the summation index by q → −q. Hence, eq. (33) yields

n̂Yℓm(n̂) = −
(

ℓ+ 1

2ℓ+ 1

)1/2

~Y ℓ , ℓ+1 ,m(n̂) +

(

ℓ

2ℓ+ 1

)1/2

~Y ℓ , ℓ−1 ,m(n̂) (35)

Finally, we examine r~∇Yℓm(n̂). First, we introduce the gradient operator in a spherical
basis, ∇q = (∇+1 , ∇0 , ∇−1), where

∇±1 = ∓ 1√
2

(

∂

∂x
± i

∂

∂y

)

= ∓e±iφ

√
2

[

sin θ
∂

∂r
+

cos θ

r

∂

∂θ
± i

r sin θ

∂

∂φ

]

, (36)

∇0 =
∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (37)
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We can introduce a formal operator ∇q on the Hilbert space by defining the coordinate space
representation,

〈~x|∇q|ℓm〉 = ∇qYℓm(n̂) .

Note that ∇q is a vector operator. We shall employ the Wigner-Eckart theorem (see, e.g.,
pp. 240–241 of Ref. [2]), which states that

〈ℓ′m′|∇q|ℓm〉 = 〈ℓm ; 1 q | ℓ′m′〉 〈ℓ′‖∇‖ℓ〉 , (38)

where the reduced matrix element 〈ℓ‖∇‖ℓ′〉 is independent of q, m and m′. To evaluate the
reduced matrix element, we consider the case of q = m = m′ = 0. Then,

〈ℓ′ 0|∇0|ℓ 0〉 = 〈ℓ 0 ; 1 0 | ℓ′ 0〉 〈ℓ′‖∇‖ℓ〉 .

Thus,

〈ℓ′‖∇‖ℓ〉 = 〈ℓ′ 0|∇0|ℓ 0〉
〈ℓ 0 ; 1 0 | ℓ′ 0〉 .

Inserting this result into eq. (38) yields

〈ℓ′m′|∇q|ℓm〉 = 〈ℓm ; 1 q | ℓ′m′〉
〈ℓ 0 ; 1 0 | ℓ′ 0〉 〈ℓ′ 0|∇0|ℓ 0〉 . (39)

We can evaluate 〈ℓ′ 0|∇0|ℓ 0〉 explicitly in the coordinate representation by employing eq. (37),

〈ℓ′ 0|∇0|ℓ 0〉 = −1

r

∫

dΩY ∗

ℓ′ 0(n̂) sin θ
∂

∂θ
Yℓ 0(n̂) .

Using Yℓ0(n̂) = [(2ℓ+ 1)/(4π)]1/2 Pℓ(cos θ), and substituting x ≡ cos θ,

〈ℓ′ 0|∇0|ℓ 0〉 =
√

(2ℓ+ 1)(2ℓ′ + 1)

2r

∫ 1

−1

(1− x2)Pℓ′(x)P
′

ℓ(x) dx , (40)

where P ′

ℓ(x) = dPℓ(x)/dx. To evaluate eq. (40), we make use of the recurrence relation,

(1− x2)P ′

ℓ(x) = ℓPℓ−1(x)− ℓxPℓ(x) ,

and the orthogonality relation of the Legendre polynomials,

∫ 1

−1

Pℓ(x)Pℓ′(x) dx =
2

2ℓ+ 1
δℓℓ′ .

It follows that

〈ℓ′ 0|∇0|ℓ 0〉 =
√

(2ℓ+ 1)(2ℓ′ + 1)

2r

{

2ℓ

2ℓ− 1
δℓ′,ℓ−1 − ℓ

∫ 1

−1

xPℓ(x)Pℓ′(x) dx

}

. (41)

To evaluate the remaining integral, we use x = P1(x) and the result of eq. (91) obtained in
Appendix A to write:

∫ 1

−1

xPℓ(x)Pℓ′(x) dx =

∫ 1

−1

P1(x)Pℓ(x)Pℓ′(x) dx =
2

2ℓ′ + 1
〈1 0 ; ℓ 0 | ℓ′ 0〉2 .
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Using eq. (29), the above integral is equal to
∫ 1

−1

xPℓ(x)Pℓ′(x) dx =
2(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
δℓ′,ℓ+1 +

2ℓ

(2ℓ− 1)(2ℓ+ 1)
δℓ′,ℓ−1 .

Inserting this result back into eq. (41) yields

〈ℓ′ 0|∇0|ℓ 0〉 =
√

(2ℓ+ 1)(2ℓ′ + 1)

2r

{

2ℓ(ℓ+ 1)

(2ℓ− 1)(2ℓ+ 1)
δℓ′,ℓ−1 −

2ℓ(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
δℓ′,ℓ+1

}

=
ℓ(ℓ+ 1)

r
√
2ℓ+ 1

[

1√
2ℓ− 1

δℓ′,ℓ−1 −
1√

2ℓ+ 3
δℓ′,ℓ+1

]

.

Using eq. (39), it follows that:

〈ℓ′m′|∇q|ℓm〉 = 〈ℓm ; 1 q | ℓ′m′〉
〈ℓ 0 ; 1 0 | ℓ′ 0〉

ℓ(ℓ+ 1)

r
√
2ℓ+ 1

[

1√
2ℓ− 1

δℓ′,ℓ−1 −
1√

2ℓ+ 3
δℓ′,ℓ+1

]

= −1

r
〈ℓm ; 1 q | ℓ′m′〉

[

(ℓ+ 1)

√

ℓ

2ℓ− 1
δℓ′,ℓ−1 + ℓ

√

ℓ+ 1

2ℓ+ 3
δℓ′,ℓ+1

]

, (42)

after employing eq. (29) to evaluate 〈ℓ 0 ; 1 0 | ℓ′ 0〉.
We are now ready to evaluate r~∇Yℓm(n̂). First, we insert a complete set of states to obtain

∇q|ℓm〉 =
∑

ℓ′,m′

|ℓ′m′〉〈ℓ′m′|∇q|ℓm〉

= −1

r

∑

ℓ′,m′

|ℓ′ m′〉
{

〈ℓm ; 1 q | ℓ′m′〉
[

(ℓ+ 1)

√

ℓ

2ℓ− 1
δℓ′,ℓ−1 + ℓ

√

ℓ+ 1

2ℓ+ 3
δℓ′,ℓ+1

]}

.

(43)

Note that in the sum over m′, only the terms corresponding to m′ = m + q survive, due to
the presence of the Clebsch-Gordon coefficient 〈ℓm ; 1 q | ℓ′m′〉. Likewise, in the sum over ℓ′,
only the terms corresponding to ℓ′ = ℓ± 1 survive. In the coordinate representation, eq. (43) is
equivalent to

∇qYℓm(n̂) = −1

r

∑

ℓ′

Yℓ′,m+q(n̂)

{

〈ℓm ; 1 q | ℓ′ , m+q〉
[

(ℓ+ 1)

√

ℓ

2ℓ− 1
δℓ′,ℓ−1 + ℓ

√

ℓ+ 1

2ℓ+ 3
δℓ′,ℓ+1

]}

.

In analogy with eq. (24), we have

~∇ =
∑

q

(−1)q ê−q∇q .

Hence, it follows that

−r~∇Yℓm(n̂) =
∑

q

(−1)q ê−q

{

(ℓ+ 1)

√

ℓ

2ℓ− 1
〈ℓm ; 1 q | ℓ− 1 , m+ q〉Yℓ−1,m+q(n̂)

+ℓ

√

ℓ+ 1

2ℓ+ 3
〈ℓm ; 1 q | ℓ+ 1 , m+ q〉Yℓ+1,m+q(n̂)

}

.
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It is convenient to employ eqs. (31) and (32) and rewrite the above result as

r~∇Yℓm(n̂) =
∑

q

ê−q

{

(ℓ+ 1)

√

ℓ

2ℓ+ 1
〈ℓ− 1 , m+ q ; 1 , −q | ℓm〉Yℓ−1,m+q(n̂)

+ℓ

√

ℓ+ 1

2ℓ+ 1
〈ℓ+ 1 , m+ q ; 1 , −q | ℓm〉Yℓ+1,m+q(n̂)

}

.

Finally, using eq. (34), we end up with

r~∇Yℓm(n̂) = ℓ

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂) + (ℓ+ 1)

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂) (44)

which is known in the literature as the gradient formula.
We can now use eqs. (35) and (44) to solve for ~Y ℓ,ℓ+1,m(n̂) and ~Y ℓ,ℓ−1,m(n̂) in terms of

n̂Yℓm(n̂) and r~∇Yℓm(n̂). Since these are linear equations, they are easily inverted, and we find

~Y ℓ,ℓ+1,m(n̂) =
1

√

(ℓ+ 1)(2ℓ+ 1)

[

−(ℓ + 1)n̂+ r~∇
]

Yℓm(n̂) , for ℓ = 0, 1, 2, 3, . . . , (45)

~Y ℓ,ℓ−1,m(n̂) =
1

√

ℓ(2ℓ+ 1)

[

ℓn̂+ r~∇
]

Yℓm(n̂) , for ℓ = 1, 2, 3, . . . , (46)

which are equivalent to the results of eqs. (14) and (15) previously obtained.2 In addition, we
also have eq. (25), which we can rewrite as

~Y ℓℓm(n̂) =
−ir

√

ℓ(ℓ+ 1)
n̂× ~∇Yℓm(n̂) , for ℓ = 1, 2, 3, . . ., . (47)

Thus, we have identified the three linearly independent vector spherical harmonics in terms of
differential vector operators acting on Yℓm(n̂). For the special case of ℓ = 0, only one vector

spherical harmonic, ~Y 010(n̂) = (−n̂ + r~∇)Y00(n̂) = −n̂/
√
4π, survives.

In the notation of Ref. [13], the three linearly independent normalized vector spherical har-
monics obtained above are denoted by

~Xℓm ≡ ~Y ℓℓm(n̂) , ~V ℓm ≡ ~Y ℓ,ℓ+1,m(n̂) ~W ℓm ≡ ~Y ℓ,ℓ−1,m(n̂) . (48)

These vector spherical harmonics satisfy orthonormality relations,
∫

dΩ ~X∗

ℓm · ~Xℓ′m′ =

∫

dΩ ~V ∗

ℓm · ~V ℓ′m′ =

∫

dΩ ~W ∗

ℓm · ~W ℓ′m′ = δℓℓ′δmm′ , (49)

for ℓ, ℓ′ ≥ 1. Moreover,
∫

dΩ ~X∗

ℓm · ~V ℓ′m′ =

∫

dΩ ~X∗

ℓm · ~W ℓ′m′ =

∫

dΩ ~V ∗

ℓm · ~W ℓ′m′ = 0 . (50)

2First, replace ℓ with j in eqs. (45) and (46). Then, in light of eq. (19), ~Y j,j+1,m = Yj+1,1
jm = Yℓ 1

j=ℓ−1,m and
~Y j,j−1,m = Yj−1,1

jm = Yℓ 1
j=ℓ+1,m. Using these results, one reproduces eqs. (14) and (15).
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Likewise the linearly independent normalized vector spherical harmonics,

{

−ir
√

ℓ(ℓ+ 1)
n̂× ~∇Yℓm(n̂) , n̂ Yℓm(n̂) ,

r
√

ℓ(ℓ+ 1)
~∇Yℓm(n̂)

}

(51)

satisfy orthonormality relations analogous to those of eqs. (49) and (50).
In the literature, one sometimes encounters another vector spherical harmonic that is defined

by n̂× ~Xℓm(n̂) ≡ n̂× ~LYℓm(n̂)/
√

~2ℓ(ℓ+ 1) [for example, see eqs. (80) and (82) in Section 6].

However, n̂× ~Xℓm(n̂) is not independent of the vector spherical harmonics obtained above in
light of eq. (17). In particular,

n̂× ~LYℓm(n̂) = −i~r n̂× (n̂× ~∇)Yℓm(n̂) = −i~r

[

n̂
∂

∂r
− ~∇

]

Yℓm(n̂) = i~r ~∇Yℓm(n̂) . (52)

An alternative method for deriving the gradient formula [obtained in eq. (44)] is to evaluate

n̂× ~LYℓm(n̂) using the same technique employed in the computation of n̂Yℓm(n̂) given in this
section. However, this calculation is much more involved and involves a product of four Clebsch-
Gordon coefficients. A certain sum involving a product of three Clebsch-Gordon coefficients
needs to be performed in closed form. This summation can be done (e.g., see Ref. [11] for the
gory details), but the computation is much more involved than the simple analysis presented in
this section based on the Wigner-Eckart theorem.

We have seen above that there are numerous choices for a basis set of three mutually or-
thonormal vector spherical harmonics that satisfy orthonormality relations such as eqs. (49) and
(50). Two possible choices are given in eqs. (48) and (51), respectively. More generally, one

can choose ~Xℓm as one of the three vector spherical harmonics and choose the other two to be
appropriate linear combinations of ~Y ℓ,ℓ+1,m and ~Y ℓ,ℓ−1,m. For example, consider the quantity

ir ~∇× ~LYℓm(n̂). This can be evaluated by employing the following operator identity,

i ~∇× ~L = ~rn̂ ~∇2 − ~ ~∇

(

1 + r
∂

∂r

)

. (53)

Since Yℓm(n̂) is independent of r, it follows that

i

~

~∇× ~LYℓm(n̂) =
[

rn̂ ~∇2 − ~∇
]

Yℓm(n̂) . (54)

Using eq. (3) and

~∇2 =
∂2

∂r2
+

2

r

∂

∂r
−

~L2

~2r2
, (55)

it follows that
i

~
r ~∇× ~LYℓm(n̂) = −ℓ(ℓ+ 1)n̂Yℓm(n̂)− r ~∇Yℓm(n̂) . (56)

Finally, using the expressions given in eqs. (35) and (44), we end up with

i

~
r ~∇× ~LYℓm(n̂) = ℓ2

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂)− (ℓ+ 1)2

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂) (57)
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Note that the corresponding properly normalized vector spherical harmonic is

~Zℓm(n̂) ≡
1

√

ℓ(ℓ+ 1)(ℓ2 + ℓ+ 1)

i

~
r ~∇× ~LYℓm(n̂) , (58)

which ensures that
∫

dΩ ~Z∗

ℓm · ~Zℓ′m′ = δℓℓ′δmm′ , (59)

for ℓ, ℓ′ ≥ 1.

6 Multipole electromagnetic radiation fields and the vector spherical

harmonics

In this section, we shall set ~ = 1, since ~ plays no role in what follows. In particular, note that
in this convention ~L = −i ~x× ~∇, which matches the definition employed in Ref. [14].

Consider the harmonic time-dependent electric and magnetic field vectors,

~E(~x, t) = Re [~E(~x)e−iωt] , ~B(~x, t) = Re [~B(~x)e−iωt] . (60)

Following Ref. [14], the electric (ℓ,m)-multipole radiation fields are given by

~B
(E)
ℓm (~x) =

aE(ℓ,m)
√

ℓ(ℓ+ 1)
~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

, (61)

~E
(E)
ℓm (~x) =

aE(ℓ,m)
√

ℓ(ℓ+ 1)

i

k
~∇× ~L

[

h
(1)
ℓ (kr)Yℓm(n̂)

]

, (62)

and the magnetic (ℓ,m)-multipole radiation fields are given by

~E
(M)
ℓm (~x) =

aM (ℓ,m)
√

ℓ(ℓ+ 1)
~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

, (63)

~B
(M)
ℓm (~x) =

aM (ℓ,m)
√

ℓ(ℓ+ 1)

(

− i

k

)

~∇× ~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

, (64)

where k ≡ ω/c, r ≡ |~x| is assumed to be much larger than the distance scale that characterizes
the current and charge sources (the so-called radiation zone), and h(1)(kr) is a spherical Hankel
function that is given by the following closed-form expression:3

h
(1)
ℓ (kr) = (−i)ℓ+1 e

ikr

kr

[

1 +

ℓ
∑

n=1

(ℓ+ n)!

n!(ℓ− n)!
(−2ikr)−n

]

. (65)

The coefficients, aE,M(ℓ,m), are proportional to the electric and magnetic multipole tensors,
respectively. In particular (e.g., see the 2nd edition of Ref. [14]),

aE(ℓ,m) = −
(

ℓ+ 1

ℓ

)1/2
4πikℓ+2

(2ℓ+ 1)!!
Qℓm , (66)

aM(ℓ,m) =

(

ℓ+ 1

ℓ

)1/2
4πikℓ+2

(2ℓ+ 1)!!
Mℓm . (67)

3See formula 10.49.6 of Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark,
NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, UK, 2010).
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Under the assumption of harmonic sources ρ(~x, t) = Re
[

ρ(~x)e−iωt
]

and ~J(~x, t) = Re
[

~J(~x)e−iωt
]

,
the electric and magnetic multipole spherical tensors (in gaussian units) are:

Qℓm ≡
∫

d3x rℓY ∗

ℓm(n̂)ρ(~x) , (68)

Mℓm ≡ 1

c(ℓ+ 1)

∫

d3x
[

~x× ~J(~x)
]

· ~∇
(

rℓY ∗

ℓm(n̂)
)

. (69)

One important property of ~B
(E,M)
ℓm (~x) and ~E

(E,M)
ℓm (~x) is that ~∇· ~E

(E,M)
ℓm = ~∇· ~B

(E,M)
ℓm = 0.

These results are automatically satisfied due to the operator identities:

~∇·~L = ~∇·( ~∇× ~L) = 0 . (70)

In light of eqs. (9) and (11), it follows that

1
√

ℓ(ℓ+ 1)
~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

= h
(1)
ℓ (kr) ~Xℓm(n̂) . (71)

Thus, ~B
(E)
ℓm (~x) and ~E

(M)
ℓm (~x) are proportional to the vector spherical harmonic ~Xℓm(n̂). In

contrast, ~E
(E)
ℓm (~x) and ~B

(M)
ℓm (~x) are proportional to −i ~∇× ~L

[

h
(1)
ℓ (kr)Yℓm(n̂)

]

. The latter can
be evaluated by employing eq. (98) of Appendix B, which yields:

−i ~∇× ~L
[

f(r)Yℓm(n̂)
]

= ℓ

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂)

(

d

dr
− ℓ

r

)

f(r)

+(ℓ+ 1)

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂)

(

d

dr
+

ℓ+ 1

r

)

f(r) , (72)

after noting that f(r)~Y ℓℓm(n̂) = ~L
[

f(r)Yℓm(n̂)
]

/
√

ℓ(ℓ+ 1) in light of eq. (9).4 Next, we make
use of the following two derivative formulae that are satisfied by the spherical Hankel functions:
(

d

dr
− ℓ

r

)

h
(1)
ℓ (kr) = −kh

(1)
ℓ+1(kr) ,

(

d

dr
+

ℓ+ 1

r

)

h
(1)
ℓ (kr) = kh

(1)
ℓ−1(kr) , for ℓ ≥ 1.

(73)
It then follows that

i

k
~∇×~L

[

h
(1)
ℓ (kr)Yℓm(n̂)

]

= ℓ

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂)h

(1)
ℓ+1(kr)−(ℓ+1)

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂)h

(1)
ℓ−1(kr) .

(74)

Thus, ~E
(E)
ℓm (~x) and ~B

(M)
ℓm (~x) are linear combinations of the vector spherical harmonics ~Y ℓ,ℓ+1,m(n̂)

and ~Y ℓ,ℓ−1,m(n̂). Note that the divergence of the right-hand side of eq. (74) must vanish, which
provides a useful check of this result (see Appendix B for further details).

In the radiation zone, we can employ the asymptotic form for the spherical Hankel function,
which is given by the first term on the right-hand side of eq. (65),

h
(1)
ℓ−1(kr) ≃ −h

(1)
ℓ+1(kr) ≃ (−i)ℓ

eikr

kr
. (75)

4If we set f(r) = 1 in eq. (72), we recover the result previously obtained in eq. (57) [after setting ~ = 1].
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Hence,

−i ~∇×~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

≃ (−i)ℓ
eikr

r

{

ℓ

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂) + (ℓ+ 1)

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂)

}

.

(76)
Using eqs. (45) and (46), we end up with

−i ~∇ × ~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

≃ (−i)ℓ eikr ~∇Yℓm(n̂) . (77)

A more useful form is obtained by employing eq. (52). We then obtain

~∇× ~L
[

h
(1)
ℓ (kr)Yℓm(n̂)

]

≃ (−i)ℓ
eikr

r
n̂× ~LYℓm(n̂) . (78)

In conclusion, we have succeeded in expressing the asymptotic forms for the multipole radia-
tion fields in terms of the vector spherical harmonics. In particular, the electric (ℓ,m)-multipole
radiation fields are given by

~B
(E)
ℓm (~x) ≃ (−i)ℓ+1aE(ℓ,m)

eikr

kr
~Xℓm(n̂) , (79)

~E
(E)
ℓm (~x) ≃ −(−i)ℓ+1aE(ℓ,m)

eikr

kr
n̂× ~Xℓm(n̂) , (80)

and the magnetic (ℓ,m)-multipole radiation fields are given by

~E
(M)
ℓm (~x) ≃ (−i)ℓ+1aM(ℓ,m)

eikr

kr
~Xℓm(n̂) , (81)

~B
(M)
ℓm (~x) ≃ (−i)ℓ+1aM(ℓ,m)

eikr

kr
n̂× ~Xℓm(n̂) . (82)

Note that the asymptotic forms of the multipole radiation fields satisfy:

~∇· ~B
(E)
ℓm (~x) = ~∇· ~E

(M)
ℓm (~x) = 0 , (83)

~∇· ~E
(E)
ℓm (~x) = ~∇· ~B

(M)
ℓm (~x) = O

(

1

r2

)

. (84)

where we have made use of the operator identities

n̂·~L = ~∇·~L = n̂·(n̂× ~L) = 0 , (85)

~∇·(n̂× ~L) = ( ~∇× n̂)·~L− n̂·( ~∇× ~L) = − i

r
~L2 , (86)

and ~∇× n̂ = 0 has been used in the last step above. Of course, ~∇· ~E
(E,M)
ℓm = ~∇· ~B

(E,M)
ℓm = 0

must be exactly satisfied. Indeed, the O(r−2) terms in eq. (84) will be canceled when higher
order terms in the r−1 expansion of the radiation fields are included [i.e., when eq. (65) is used
instead of the leading O(r−1) term given by eq. (75)].
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Appendix A: An integral of a product of three spherical harmonics

In this Appendix, we state a number of results that are derived on pp. 231 of Ref. [2]. The
product of two spherical harmonics can be obtained via an important expansion known as the
Clebsch-Gordon series,

Yℓ1m1
(n̂) Yℓ2m2

(n̂) =
∑

ℓ,m

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ+ 1)
〈ℓ1m1 ; ℓ2m2 | ℓm〉〈ℓ1 0 ; ℓ2 0 | ℓ 0〉 Yℓm(n̂). (87)

The sum over m can be performed using eq. (2). Only one term survives (corresponding to
m = m1 +m2),

Yℓ1m1
(n̂) Yℓ2m2

(n̂) =
∑

ℓ

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ+ 1)
〈ℓ1m1 ; ℓ2m2 | ℓ m1+m2〉〈ℓ1 0 ; ℓ2 0 | ℓ 0〉 Yℓ ,m1+m2

(n̂).

(88)
Note that 〈ℓ1m1 ; ℓ2m2 | ℓ m1 +m2〉 = 0 unless the two conditions, |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2 and
|m1 +m2| ≤ ℓ are both satisfied. This is simply a consequence of the rules for the addition of
angular momentum in quantum mechanics. Consequently, the sum over ℓ in eq. (88) can be
taken over the range of integer values that satisfy: max

{

|ℓ1 − ℓ2| , m1 +m2

}

≤ ℓ ≤ ℓ1 + ℓ2 .
If we multiply eq. (87) by Y ∗

ℓ3m3
(n̂) and then integrate over the solid angle using the orthog-

onality of the spherical harmonics,
∫

Yℓm(θ, φ) Y
∗

ℓ′ m′(θ, φ) dΩ = δℓℓ′ δmm′ , (89)

one easily obtains the integral of a product of three spherical harmonics,

∫

Yℓ1m1
(θ, φ) Yℓ2m2

(θ, φ) Y ∗

ℓ3m3
(θ, φ) dΩ =

√

(2ℓ1 + 1)(2ℓ2 + 1)

4π(2ℓ3 + 1)
〈ℓ1m1 ; ℓ2m2 | ℓ3m3〉 〈ℓ1 0 ; ℓ2 0 | ℓ3 0〉 .

(90)

Using Yℓ0(n̂) = [(2ℓ+ 1)/(4π)]1/2 Pℓ(cos θ), the following special case of eq. (90) is then obtained,
∫ 1

−1

Pℓ1(x)Pℓ2(x)Pℓ3(x) dx =
2

2ℓ3 + 1
〈ℓ1 0 ; ℓ2 0 | ℓ3 0〉2 . (91)

Appendix B: Differential operations

The following relations, which can be found in Refs. [3, 8, 12], are often useful. In the
formulae below, f(r) denotes an arbitrary function of r ≡ |~x| and n̂ ≡ ~x/r. First, we provide
the gradient relation,

~∇
[

f(r)Yℓm(n̂)
]

=

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂)

(

d

dr
+

ℓ+ 1

r

)

f(r)−
√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂)

(

d

dr
− ℓ

r

)

f(r) .

(92)
Note that if one sets f(r) = 1 then the above formula reduces to eq. (44).
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Next, we present the divergence relations:

~∇·
[

f(r)~Y ℓ,ℓ+1,m(n̂)
]

= −
√

ℓ+ 1

2ℓ+ 1
Yℓm(n̂)

(

d

dr
+

ℓ+ 2

r

)

f(r) , (93)

~∇·
[

f(r)~Y ℓ,ℓ−1,m(n̂)
]

=

√

ℓ

2ℓ+ 1
Yℓm(n̂)

(

d

dr
− ℓ− 1

r

)

f(r) , (94)

~∇·
[

f(r)~Y ℓℓm(n̂)
]

= 0 . (95)

Finally, we exhibit the curl relations:

~∇×
[

f(r)~Y ℓ,ℓ+1,m(n̂)
]

= i

√

ℓ

2ℓ+ 1
Yℓm(n̂)

(

d

dr
+

ℓ+ 2

r

)

f(r) , (96)

~∇×
[

f(r)~Y ℓ,ℓ−1,m(n̂)
]

= i

√

ℓ+ 1

2ℓ+ 1
Yℓm(n̂)

(

d

dr
− ℓ− 1

r

)

f(r) , (97)

~∇×
[

f(r)~Y ℓℓm(n̂)
]

= i

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂)

(

d

dr
− ℓ

r

)

f(r)

+i

√

ℓ+ 1

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂)

(

d

dr
+

ℓ+ 1

r

)

f(r) . (98)

As an example, since ~∇·( ~∇× ~L) = 0, it follows that the divergence of the right-hand side
of eq. (74) must also vanish. We can check this by employing eqs. (93) and (94):

~∇·

{

ℓ

√

ℓ + 1

2ℓ+ 1
~Y ℓ,ℓ+1,m(n̂) + (ℓ+ 1)

√

ℓ

2ℓ+ 1
~Y ℓ,ℓ−1,m(n̂)

}

= −ℓ(ℓ + 1)

2ℓ+ 1
Yℓm(n̂)

{(

d

dr
+

ℓ + 2

r

)

h
(1)
ℓ+1(kr)−

(

d

dr
− ℓ− 1

r

)

h
(1)
ℓ−1(kr)

}

=
kℓ(ℓ+ 1)

2ℓ+ 1
Yℓm(n̂)

[

h
(1)
ℓ (kr)− h

(1)
ℓ (kr)

]

= 0 , (99)

after making use of eq. (73).
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