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Abstract

We present an upgraded read-out and data acquisition system for silicon detector char-

acterization using off-the-shelf commodity hardware. This hardware centers around

an embedded reconfigurable FPGA, which allows us to create custom digital logic for

data conditioning. This data is sent over widely available and commoditized cable

standards (such as ethernet and USB) via the on-board processor. This setup fur-

ther obviates the need for data acquisition hardware (such as the current offerings of

National Instruments).
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Chapter 1

Introduction

This paper details the upgrade of an existing prototype data acquisition system from

its current setup (described in Section 1.2) to a reconfigurable embedded system. My

task was to design a custom peripheral to the embedded CPU that would perform the

requisite data conditioning, to design the system as a whole such that the components

(CPU, memory, ethernet, and custom peripheral) worked in harmony, to write the

software that ran on the embedded CPU, and to write the software on the host PC

that communicated with the embedded system. Data comes into the system in the

form of a group of serialized wires, originating from an ASIC designed at the Santa

Cruz Institute for Particle Physics (SCIPP), and leaves the embedded system over a

standard crossover ethernet cable into a host PC.

The custom peripheral hardware was written in the Verilog Hardware Descriptive

Language (HDL), and was based off of an existing design from Brian Keeney [1].

The systems upgrade is only on the digital back-end side; thus, the front-end ASIC

designed by Edwin Spencer, and the front-end printed circuit board designed by
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Forest Martinez-McKinney, remain the same. I had to create all of the cabling for

the new connectors introduced by the embedded system.

The software on the embedded PowerPC CPU was written in C, while the software

on the host PC was written in C++ using a cross-platform network library and GUI

toolkit (SDLnet and wxWidgets, respectively).

1.1 Background and Overview

The Embedded Particle Tracking Silicon Microscope (EPTSM) project is a data ac-

quisition system used for characterizing silicon detectors. The original system —

Particle Tracking Silicon Microscope (PTSM) — was created for small-scale medical

applications, and was the subject of B. Keeney’s thesis [2].

The project was unique at the time in that it leveraged field-programmable grid

arrays (FPGAs) along with existing National Instruments data acquisition (DAQ)

hardware to make a relatively low-cost custom DAQ system. The original PTSM

setup was to be used for radiobiological research, to determine the effects of induced

mutations on simple organisms such as C. Elegans [4].

As the project evolved, Dr. H.F.-W. Sadrozinski proposed that the same system

could be used to measure the electrical characteristics of silicon detectors for ATLAS

RD50 research, whose main goal was to determine the effects of radiation on the

efficiency of said detectors.
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Silicon Detectors

Silicon detectors are one of the most attractive particle detection technologies cur-

rently used in high-energy particle physics experiments. They serve as the first and

most precise detection layer in the concentric rings that comprise detector systems in

particle colliders, allowing researchers to track the break-up, trajectories, and distri-

bution of energy directly after two particles (such as a positron and electron) collide[3].

The detectors originate from both commercial vendors and universities from all

over the world who have the resources to manufacture these detectors. Many of these

detectors were designed for other experiments or for more general-purpose applica-

tions. They have not been tested for an application such as the Large Hadron Collider

(LHC), which is the home of the ATLAS detector, where they will be exposed to an

incredible amount of radiation. Thus, SCIPP researchers look at various candidates

for the upgrade, and determine which ones are viable.

The primary goal in characterizing detectors is to learn as much as we can about

the detectors, including interstrip capacitance, resistance, leakage currents, noise,

and efficiency. More specifically, RD50 research is looking into the effects of radiation

on the silicon material and its ability to read out particle hits. By constructing a

deterministic framework for extracting these electrical details, researchers can make

appropriate changes to purify the data in the final experiment.

1.2 Comparing Systems

In order to clarify the motivations behind this project, I will compare the current

setup against the embedded system. There are a few common components between
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the two systems, and as such, those parts are not discussed in this section. For now,

it will suffice to understand that the front-end board and PMFE chip provide digital

signals at a fixed data rate. Further details on the PMFE are in section 2.2.2, and

details on the front-end board are in section 2.2.3.

The Current Setup

The current PTSM prototype uses an older Xilinx Virtex-II FPGA development board

to read out the front-end chip (which is detailed in section 2.2.2). To get this in-

formation to the host PC, a National Instruments PCI DAQ solution collects the

conditioned data from the FPGA at a maximum rate of 160 Mbps.

The FPGA generates signals conforming to the Low-Voltage Differential Signal

(LVDS) standard (described in section 2.2.5) in order to facilitate longer cable lengths

and less noise, but the commercial DAQ card only accepts standard CMOS voltages.

This necessitates a signal translator board. This board was developed in-house, and

has been one of a handful of points of failure as detailed below.

The cable interface between the front-end board and the FPGA board is another

such point of failure. The FPGA board does not provide any structured input/output

pin layout that works suitably with LVDS signal pairs, nor does it provide connection

housings or headers. It simply provides direct vias to the FPGA chip.

The consequence of this design is that its original engineers had to create custom

machined parts to form a make-shift plastic housing; this connector holds the female

100-mil connections that mate with the soldered-on male counterparts. While these

worked initially, over time they became unreliable and were inconsistently making
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contact.

Yet another weakness in the system was the cabling from the FPGA board to

the translator board, and the subsequent translator board electronics. On the FPGA

side, the original designers faced many issues with the housing and contact points

as mentioned above. Additionally, the signal translator chips were not wired to

handle every electrical scenario, and would short (and get damaged), often requiring

a replacement. The researchers eventually tracked the problem down to an incorrect

power-up sequence; for the sake of robustness, I have addressed this in the next

generation embedded system.

1.3 Moving to an Embedded System

Researchers at SCIPP are currently using the original PTSM prototype to run ex-

periments. The system, however, has proved to be unstable, unreliable, and riddled

with technical problems. The issues are entirely in the implementation domain; that

is, when all of the components are working as they are supposed to, the experimental

data is sound (and has even led to some publications).

When the system isn’t working, however, the energy and effort invested into de-

bugging it has motivated the upgrade to a more robust and versatile solution. We

made the decision to move towards a reconfigurable embedded system – one that

would intrinsically and by design eliminate many of the points of failure.
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Figure 1.1: Xilinx ML405 Embedded System

Embedded System Advantages

The new system consists of the same front-end board as before that now feeds directly

into the Xilinx ML405 reconfigurable embedded system. This development board has

16 differential inputs with mounted 100-mil headers, ideal for LVDS signals.

As far as cables go, there is precisely one custom data cable in the entire setup,

and it goes from a standard D-sub connection on the front-end side to the headers

on the ML405 just mentioned. This allows us to use off-the-shelf parts that are both

structurally sound and transient tested – that is, they have been tested in the field

for several decades now.

To get the data from the ML405 into the host PC, we use a standard RJ-45
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ethernet jack and cable. The on-board ethernet MAC/PHY chip automatically

detects a crossover connection, thereby obviating the need for a special crossover

CAT5e/CAT6e cable.

Furthermore, both the Virtex-4 FPGA on the ML405 and its MAC/PHY chip have

Gigabit ethernet capability. This functionality is not in the current requirements, and

is therefore not implemented — it is, however, available as an option in the future.

See section 1.4.2 for information regarding bandwidth.

1.4 Looking Ahead

1.4.1 Short-term Goals

As far as the embedded system goes, I hope to have it run experiments for the next

two years without any engineering problems. The learning curve for debugging such

a system is steep, and as a result, I have made every attempt to make troubleshoot-

ing a deterministic and simple task. Unfortunately, the nature of this project (and

engineering in general) precludes me from designing a perfect system.

To accommodate further bug fixes after I leave, I have annotated all of the source

code with comments. Furthermore, I’ve attempted to describe the technical details

(such as detailing the timing requirements through timing diagrams, and listing the

many non-obvious constraints in interfacing to the provided bus) as best as I can.
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1.4.2 Long-term Goals

Given the Xilinx ML405’s Gigabit ethernet capabilities (allowing practical data rates

exceeding 200 Mbps), new higher-bandwidth applications in medical imaging appli-

cations could be realized. That is, if someone were to put in the energy, the basic

foundation of such a system has already been implemented. As it stands, increasing

the current bandwidth of the board (which is approximately 2 Mbps over a 100 Mbit

crossover ethernet cable) would be a matter of: 1) rearranging the memory layout

such that the internal caching schemes in the embedded CPU could be exploited; 2)

redesigning the software readout system that manages the movement of processed

data into memory, and then from the memory into the ethernet controller to be sent

out; and 3) fine-tuning and exploiting the low-level features of the open-source lwIP

TCP/IP stack used.
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Chapter 2

EPTSM Overview

The Embedded PTSM system is comprised of four sub-systems: the detector/read-

out chip, the digital back-end electronics, the scintillator and photomultiplier tube,

and the host computer.

2.1 Flow of Data

The overall goal of the project, as mentioned earlier, is to characterize detectors. In

order to do this, we use a controlled radiation source that precisely emits electrons

conforming to a known Gaussian distribution. This source is placed directly under-

neath the detector such that the data that it reads out can be fitted against a function

from the same class as the expected Gaussian distribution.

In order to separate actual particle hits from electrical noise, there is a scintilla-

tor mounted directly above the detector. Electrons from the radiation source pass

through the detector (depositing a charge) and are absorbed in the scintillator. The

scintillator’s primary purpose is to turn the absorbed electron into a photon, which
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is then detected by a photomultiplier tube (PMT) and read out as if it were one of

the channels on the silicon detector.

2.2 Breakdown of the Components

e-

e-

e-

PMFE

Front-end Board

FPGA

Host PC

Scintillator and PMT

Silicon Detector

Electron Source

Figure 2.1: Overall system layout, including the electron source

The aforementioned subsystems’ components will now be described. The detector/read-

out chip subsystem consists of a target silicon strip detector for characterization,

and an ASIC to convert the small charges deposited onto the detector into a usable

electrical signal. This signal is then digitized and the digital back-end subsystem

processes it; that is, the signals feed into a reconfigurable embedded system which

subsequently tracks and timestamps any transitions. Additionally, an independent

scintillator/photomultiplier tube pair feeds into the back-end electronics for reasons

clarified below.
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2.2.1 Silicon Detectors

The silicon strip detectors consist, as the name implies, of large strips of doped

silicon. When a particle passes through one of the strips, it deposits a small charge

by triggering energy band changes within the crystal lattice (in essence, ionizing that

particular strip). The detectors must be biased during experiments in order for this

desired effect to occur.

e-

N-Doped Si

P- Doped Si

Figure 2.2: An electron depositing charge onto a single strip on an N-type silicon

detector

Each one of these strips is referred to as a detector channel, and they are referred

to by their channel ID (which is simply a number assigned sequentially). We are able

to determine where a channel is located based on this number. See Figure 2.2.
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2.2.2 The Particle Microscope Front-End (PMFE) Chip

In order to detect the deposited charge on the detector (which are typically on the

order of a few femtocoulombs), we use an ASIC designed to amplify and digitize

its input. This chip is called the Particle Microscope Front-End (PMFE) chip —

internally, it has a charge amplifier, comparator, and a serializer. It was designed at

SCIPP by Edwin Spencer.

Figure 2.3: The Particle Microscope Front-End Chip (PMFE)

The PMFE must be sensitive to a very small charge, and as such, all electrical

noise and interference must be minimized (if not eliminated altogether). To this end,

the clock signals that drive the serializer logic must come from an external, off-board

source. Crystal oscillators tend to generate too much noise, and there are few (if any)

viably cheap alternatives. Thus, the FPGA generates the required clock signals and

transmits it to the PMFE.

One feature of the PMFE is its ability to allow the user to calibrate the chip. The

PMFE has an input signal that feeds directly into the inputs of the signal conditioning

chain (that is, the aforementioned charge amplifier, comparator, and serializer). This
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allows us to emulate a deposited charge in order to deterministically test both the

chip’s internal current biasing, any issues with the bonding of the silicon detector to

the board, and the digital back-end electronics.

Currently, we can test the PMFE by wiring its calibration input to a pulse gener-

ator to emulate what a fixed number of pulses would look like on the back end. If we

generate 100 pulses, we expect to see 100 detector hits read out. The host computer

starts the data acquisition on the FPGA, which controls the pulse generator. The

FPGA then reads out the data to the host computer, allowing the user to determine

whether or not all of the synthetic hits where registered.

The internal comparators act as a data quantizer, taking the voltage input from

the charge amplifier and discretizing it. Varying detectors, however, register different

voltage levels at this amplification stage; as a result, we cannot have a fixed threshold.

The PMFE provides a threshold voltage input that the experimenter changes based

on what he or she knows about the detector.

2.2.3 Front-End Board

The Front-End Board acts as a host to the PMFE and its requisite electronics. It

additionally provides the housing for the silicon detector, and a hole to allow the

electrons to hit the detector directly. The electronics that support the PMFE are

largely related to the threshold inputs and its internal current biasing (these are

one-time potentiometer configurations that bias the internal transistors). The board

additionally handles all of the local signal routing and power filtering.
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2.2.4 Scintillator, PMT, and Coincidences

The scintillator absorbs particles of a certain size, then emits a photon. This photon

is detected by the photomultiplier tube (PMT), which turns it into a signal that we

can plug directly into the back-end electronics as if it were a regular detector channel.

The primary goal here is to eliminate any noise hits – that is, induced electrical

fields from the outlying electronics or environment which register as false particle

hits. The software package will only accept hits on the other detector channels if

they coincide with the PMT hits – these are referred to as coincidences.

2.2.5 Signaling and Signal Standards

We use the Low-Voltage Differential Signaling standard wherever possible to ensure

reliable and low-noise transmission of data. The PMFE has internal LVDS drivers

and receivers for all of its signals – specifically, both input clocks and all eight data

signals. On the FPGA side, the Xilinx Virtex-4 chip has internal LVDS receivers;

moreover, the ML405 development board has 16 designated general-purpose LVDS

inputs. They are specifically connected to the FPGA’s LVDS receivers, and the traces

are optimized for differential pairs.

2.2.6 Summary of the Digital Back-end Electronics

The primary duty of the digital back-end electronics is to record every transition

in the channels that it receives and timestamp when these transitions occur. This

job is relegated to the embedded system – the digital logic that handles this task is

programmed into the FPGA fabric and communicates over the local bus to the hard

15



CPU within the FPGA.

This subsystem is detailed in the next chapter.

16



Chapter 3

Digital Back-End

3.1 Overview

The digital back-end electronics is defined as the embedded system and host PC

coupled together to process the raw channel information (that is, whether or not

there is charge on said channel) into formats that can then be used to deduce physical

characteristics. Within this set, the digital back-end logic is defined as the custom

design implemented in the FPGA that performs the primary task of monitoring the

channel states and recording any changes.

3.1.1 FPGA Processing

The FPGA embedded system has the low-level processing and buffering required to

sustain our desired bandwidth. It timestamps each individual channel’s transitions,

giving the host computer information about which channels changed state, what

state they changed into, and when this happened (relative to the local clock on the
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FPGA). The host PC runs this information through the ROOT data analysis package

to generate graphs and fit functions.

In addition to timestamping the channel transitions, the back-end also contains

glue logic to coordinate various components. This includes calibration pulse genera-

tion, inhibition of acquisition, and controlling the voltage/current sources via GPIB.

3.1.2 The Host Machine

Once the embedded system collects the data, it reads it out to the host computer over

a 10/100 ethernet connection. The software on the embedded system runs a TCP/IP

server that the client software on the host Windows or Linux machine connects to.

The client sends control commands such as those to start and stop data acquisition

and mask out certain channels.

3.1.3 Data Analysis

The client software that runs on the host PC runs the data through the open-source

ROOT analysis package provided and maintained by CERN. This software allows us

to generate various histograms of the hit distribution, then fit appropriate graphs to

them.

The timestamp information that is recorded with each hit allows researchers to

determine the time-over-threshold (TOT), which essentially gives them a relatively

good approximation of the magnitude of the charge deposited.
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3.2 Implementation

3.2.1 Serialized Data and Clock Signals

Pulsed Clock

Data Clock

D0

D1

D2

D3

D4

D5

D6

D7

6 7 4 6 7 45 2 3 0 1

14 15 12 14 15 1213 10 11 8 9

22 23 20 22 23 2021 18 19 16 17

30 31 28 30 31 2829 26 27 24 25

38 39 36 38 39 3637 34 35 32 33

46 47 44 46 47 4445 42 43 40 41

54 55 52 54 55 5253 50 51 48 49

62 63 60 62 63 6061 58 59 56 57

Figure 3.1: Main clock signals and data

The PMFE sends channel state information through eight wires, each containing

eight serialized bits, for a total of 64 bits. Each bit corresponds to that specific

channel’s state – that is, it is high so long as charge is detected on the strip.

Due to noise constraints, the PMFE cannot generate its own clock signals to do

the serialization. It instead relies on the FPGA to generate these signals using its

internal PLLs. To serialize data, the PMFE needs two pieces of information: the

clock edge to send bits out on, and the clock edge to synchronize each packet of eight

bits. These are known as the data clock and pulsed clock, respectively. The former
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runs at 50 MHz on both edges (yielding an effective bit rate of 100 MHz), while the

latter is high every fifth data clock for the duration of its period (that is, it is high

for one of the 50 MHz clocks, and low for four of them).

One added benefit of generating these clocks on the FPGA is that these same PLLs

can be used to drive the internal deserializer on the receiving end. The only change

that needs to happen is the phase must be adjusted to account for the round-trip

delays intrinsic in such a design.

3.2.2 The Channel Servers

Brian Keeney’s original design implemented the timestamping feature by allocating

what he called a channel server for groups of channels – this design was ported over to

the embedded system. The goal is twofold: first, the problem space is subdivided in

an elegant manner by assigning each channel server with a unique group of channels;

second, the size of the groups are chosen to exploit the existing clock structure. For

the former goal, such a subdivision negates the need for individual logic and buffers

for each channel, which would inadequately allocate resources. In the latter case, the

two clocks (the data clock and the pulsed clock) are used to clock and control the

state machines that check for transitions.

The pulsed clock goes high every five data clocks. This allowed Brian to have each

channel server monitor four channels each. On every data clock, the state machine

progresses to the next channel in its group, and synchronizes on every pulsed clock.

Groups of four channels per channel server make a total of 16 channel servers – a

managable and reasonable balance of FPGA resources.
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The channel servers constantly check for changes in channel state, and record those

changes to a small, local first-in first-out (FIFO) data structure. These independent

buffers need a state machine to consolidate all of the transition information into one

single buffer to be exported into the software realm on the embedded system. The

FIFO server handles this task.

Internal FIFO

Channel Servers

C
h

a
n

n
e

l S
ta

te
 In

fo
rm

a
ti

o
n

FIFO Server DMA Handler

P
ro

ce
ss

o
r 

Lo
ca

l B
u

s 
(P

L
B

)
Figure 3.2: The PTSM peripheral flow of data

3.2.3 The FIFO Server

The FIFO server’s job is to collect data from each of the channel servers and feed them

into a single larger FIFO. Additionally, it contains logic to prioritize those channel

servers that need to be emptied first. If none of the channel servers’ FIFOs are beyond

half of their capacity, the FIFO server’s state machine simply cycles through them
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incrementally, removing one item at a time. If there is at least one channel server

whose FIFO exceeds half of its depth, the FIFO server will empty qualifying channel

servers out entirely. The reasoning behind this decision is that the channel servers

which are more occupied are more likely to produce future channel hits.

The order of priority is only to one degree – that is, the decision to empty a

channel server is based solely on whether or not it is at least half full. If all of the

channel servers are in this state, then all channels are given equal priority, and are

thus emptied out sequentially. Since they are all considered peers of equal weight,

the metric beyond FIFO capacity is an arbitrary one.

3.2.4 Continuity of Data

Channel Server Adds Channel, Updown, and Timestamp

FIFO Server Adds a Data Continuity Indicator (Counter) Before Inserting into FIFO

DMA Handler Adds a Data Continuity Indicator (Counter) and Valid Bit Before Sending Over Bus

TIMESTAMP

UPDOWN

CHANNELFIFO DCI

TIMESTAMP

UPDOWN

CHANNEL

TIMESTAMP

UPDOWN

CHANNEL

FIFO DCI

DMA DCI

VALID

Figure 3.3: Construction of a 64-bit Data Packet

From the channel servers to the host machine, there are many potential points of

data loss due to timing and design errors. Often, throughout the project, I discovered
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that a register latching on the wrong clock cycle could result in data loss. To ensure

that I was correctly transmitting the data, I included counters that were embedded

in the 64 bits – these counters are referred to as data continuity indicators (DCI).

The counters serve two primary purposes. First, they have allowed me to debug

the aforementioned dropped data issue. Second, if there is no data to read out, but

the FPGA reads out the data anyway, it becomes easy to eliminate duplicates. Thus,

they serve to both eliminate extra data, and notify the user of missing data.

Two counters are part of each packet: the FIFO DCI counter, which gets incre-

mented before data enters the primary FIFO (in the FIFO server), and the DMA

DCI counter, which is incremented on each clock of a DMA transaction. These are

often off by a constant value, since we sometimes read more data than is in the buffer

(although it should be noted that no errors will occur in this situation. Too much

data is not a problem so long as it can be identified as such).
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Chapter 4

Embedded System

4.1 Hardware

4.1.1 DMA Transactions

The custom PTSM peripheral sits on the Processor Local Bus (PLB), and copies data

into the software domain via direct memory access (DMA) transactions. DMA trans-

actions require a master peripheral and a slave peripheral, and allow large amounts

of data to be copied between two devices without any CPU intervention. Xilinx’s

Intellectual Property InterFace (IPIF), detailed in appendix A, provides DMA ca-

pabilities by making the peripheral a bus master. This allows the DMA portion of

the code to take control of the bus and copy data from one slave to another. DMA

master capability is integrated into the peripheral to allow for fast transactions to

the target destination. It’s faster to read from the local peripheral (without any bus

transactions), and then write directly to the bus.

The data to be transferred over the bus is stored in the FIFO located in the FIFO
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Figure 4.1: FPGA Embedded System Block Diagram

server module of the digital back-end logic. To get this data out of the peripheral,

software must instruct the local DMA master to perform a burst-read transaction

(that is, multiple words in one continuous transaction) to a memory device. On the

peripheral side, this appears as a read instruction with a specific burst input signal

set high for as many clock cycles as it is attempting to read. On this system, reads

are done in 16-word bursts, so the user IP can expect this signal to remain high for

16 bus clock cycles. According to the specifications of the IPIF, however, we cannot

anticipate this to be consistent with future versions. Therefore, no assumptions about

the size of each burst transfer are made. The data must appear on the bus so long

as this burst and acknowledge signals remain asserted, where each individual 64-bit
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word is read out on the rising edge of the clock.

4.1.2 Software Registers

The easiest and simplest way to have the embedded software control and communicate

with the EPTSM peripheral is through the IPIF’s software register feature. This

feature provides the software side with registers that it can read or write to. The

hardware can then determine how to allocate and react to these I/O operations.

For this project, I’ve used the software registers to: start and stop data acquis-

tion; set the calibration mode and type; allow the software to write the channel

mask data (to mask out specific channels); read parallelized raw channel data for

debugging/troubleshooting; and read how many channel transitions were lost due to

bandwidth and latency issues.

Implementing this feature was a matter of modifying the existing sample Verilog

code and abstracting the bits into logical bus names. This was done in the Register

Handler module, whose I/O consisted of two sets: the logically named buses that

connected to other modules, and the IPIF bus interaction signals.

4.2 Software

4.2.1 Coordinating the DMA

From the software side, DMA transactions are coordinated by the CPU by writing

to special registers in the peripheral’s I/O memory. The three registers of interest

are the source address, destination address, and transaction length (in words). The
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source address is the peripheral’s base address, while the destination is the raw base

address of the on-chip RAM blocks. These are not used by any other part of the

design, and are ideal because they are both directly connected to the PLB bus, and

tolerate 64-bit-wide transactions.

The DMA master notifies the software when the transaction is complete via an

interrupt. Therefore, we register an interrupt handler with the on-system interrupt

controller and its driver, and enable the specific DMA ’done’ bit. As will be detailed

below, the software is multithreaded. This affords us the use of IPC functions –

more specifically, we can use semaphores to allow the interrupt handler to wake up a

process that is sleeping and waiting for the DMA transaction to complete.

4.2.2 The Network Stack
Lo

ca
l B

u
s

FPGA

Custom Peripheral

User Software

Xilinx Microkernel

lwip TCP/IP Stack

Figure 4.2: Software Layers

The network stack is implemented using Xilinx’s port of the open-source Light-

Weight IP (lwIP) library. The library comes pre-configured to work with Xilinx’s
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OPB Ethernet core, eliminating any initial overhead. It features a fully implemented

TCP/IP stack that can be accessed using the standard BSD socket interface for server

functionality.

The embedded system thus acts as a TCP/IP server, while the host PC’s software

is the TCP/IP client. I’ve kept the system simple and easy to debug by using a single

cross-over ethernet cable – putting only two nodes on the network removes the chance

of collisions and chatter from nodes we are not interested in.

4.2.3 Multithreading

Xilinx provides a microkernel to use with their chips that provides several POSIX

services such as pthreads, processes, IPC, and dynamic memory allocation. Support

for pthread allows us to set up a multithreaded network application where the control

logic lies in one thread, and each client connection (and its subsequent code to send

data out) lies in another. Additionally, the lwIP library requires several of these

features to run – it relies on the internal mailbox feature to handle buffering packets.

Another benefit of using the Xilinx Microkernel is its IPC functions for situations

where a thread is waiting for data (such as the case presented above where a specific

thread may sleep until a particular DMA transaction is completed).

4.2.4 Integrating the Modules

To ship data out of the board, the software must first wait for a client’s connection.

Once this is received, and the client instructs the embedded system to send it data,

it attempts to do so as fast as possible. The software must start a DMA transaction,
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then wait for it to complete. However, while it is waiting, it uses the CPU to transmit

data over the network in order to maximize the CPU’s time.

This is accomplished through two buffers. It first triggers a DMA transaction,

then immediately sends out a pending data buffer. Once this data buffer has been

transmitted, the thread sleeps until the DMA transaction is completed. In practice,

the thread typically does not sleep more than a handful of clock cycles, since a large

portion of the DMA transaction time overlaps with the TCP/IP stack sending data

out.

When the system is running as it is designed to, it’s able to perform these tasks

at a rate of approximately 2 Mbps. Most of the CPU time is spent copying buffers

from the block RAMs, into lwIP’s buffer pool, and then back over the bus to the

ethernet peripheral. In the current implementation, only the PTSM peripheral uses

DMA. Future versions will both reduce the amount of copying done, and rely more

on DMA (i.e. directly between memory buffers and the ethernet peripheral).
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Chapter 5

Challenges

The challenges in this project have been bountiful. For the most part, they stemmed

from the steep learning curve in these embedded systems, coupled with the fact that

I was working primarily on my own with very little knowledge. I spent quite a bit

of time attempting to understand the technology based on technical documentation

— this was a challenge due to the documentation’s assumptions of knowledge that I

didn’t have.

To add to the complexity, the technology was relatively new when I started. This

meant that there were often issues related to inadequate documentation, or yet-to-

be-implemented features in software (namely those that we required). In particular,

there was no Verilog support in the embedded system development suite. All of our

prior designs were in Verilog, and porting it to VHDL was not worth the effort at the

time.

The project first began as an attempt to implement the embedded system on the

Xilinx ML310 board. The board had just been released at the time (it was a mere 2
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months out of its first board run), so comprehensive documentation wasn’t initially

available. Eventually, we moved away from this board because getting data off of it

required going over the local PCI bus. We deemed this a waste of energy, since we

could easily accomplish this requirement via a MAC/PHY directly connected to the

FPGA (on the ML310, it went over the PCI bus to a PCI MAC/PHY slave).

I believe this project would have been completed much earlier had I been privy to

the debugging tools that Xilinx and other vendors offer. I eventually learned to use

ChipScope to analyze real-time signals in the FPGA – this would have saved me time

attempting to debug bus transaction timing issues. Later, we acquired a license for

the IBM Bus Functional Model (BFM) toolkit, which allows developers to simulate

various bus transactions without having to simulate the entire logic behind it. The

advantage here was speed and interface simplicity. Finally, while there were several

obstacles in getting it working, I learned to simulate the design in Modelsim. This

was especially beneficial in monitoring my peripheral’s interaction with its peers on

the bus.
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Appendix A

Interfacing to the OPB/PLB

System Bus

A.1 Introduction

The PowerPC processor embedded in the FPGA fabric communicates with peripherals

via one of two main buses (both of which are part of IBM’s CoreConnect technology):

the On-Chip Peripheral Bus (OPB) and the Processor Local Bus (PLB).

The differences between the two are documented in detail in the CoreConnect

documentation [1]. To summarize, the PLB allows for high-speed transfers directly

to the CPU. Devices attached to this bus are typically memory devices and any

data-intensive peripheral. The OPB, on the other hand, is slightly more flexible, and

better suited for general-purpose peripherals. Examples include interrupt controllers,

ethernet devices, UART interfaces, and bridges to other buses (such as USB, PCI, or

IIC).
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Additionally, for the Xilinx implementation, the PLB is natively 64 bits wide,

while the OPB is natively 32 bits wide.

A.2 Connecting to a Xilinx Chip’s Bus

Xilinx has made interfacing to either of the two buses incredibly simple via the IPIF

(Intellectual Property InterFace). The IP core that ships with the Embedded Devel-

opment Kit (EDK) comes in two flavors, one for each of the aforementioned buses.

The IPIF provides various services to the user, including (but not limited to): slave

or master operation, and an abstract layer thereof; DMA and DMA/Scatter-Gather

control; read and write FIFOs; user interrupt service; software-accessible registers;

and multiple memory addresses. These features are simplified and summarized below.

Details can be found in Xilinx’s documentation.

Slave or master operation simply refers to the IPIF’s ability to act as a bus slave

or bus master, and providing the user (the developer) simplified signals. The user

does not need to worry about tri-stating or any specific details beyond the basic

request-acknowledge signals that are provided. The user should, however, know what

all of the signals are for. For example, the Byte Enable (BE) bus is critical for all

transactions. To summarize, the PLB transactions will often be smaller than 64 bits

wide, and as such, the standard provides the BE bus where each bit represents one

byte. Since the bus is 64 bits wide, and there are 8 bits in a bytes, this means that

the BE bus is 8 bits wide. When writing, this is important; when reading, it doesn’t

particularly matter.

DMA and DMA/Scatter Gather are provided via the Bus2IP Burst signal. The
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signal will go high, and data is expected on the next clock cycle. Once it goes low, the

next clock cycle will be the last word registered and posted to bus. Scatter Gather

functionality is abstracted on the IPIF side.

Read and write FIFOs are ideal for projects that need to share large amounts of

data with the software in a stream fashion (such as ethernet devices). They can be

coupled with DMA to allow direct writing and reading to memory devices.

The user interrupt service provides the IPIF user logic with a signal input which

the logic can assert to trigger an interrupt. The IPIF provides various sensitivities

(level high, level low, rising edge, and falling edge). The user must connect this

interrupt signal either directly into the CPU’s interrupt input port, or (more likely)

to an interrupt controller peripheral. Xilinx provides the OPB and PLB INTC device

to perform this function (within which priorities are assigned to interrupts).

Software-accessible registers are typically used for software configuration of a hard-

ware device. On the user-logic side, the input data bus will assert an input on a write

transaction, and the output data bus can be asserted with a register’s contents on a

read transaction. Note that read and write are set from the software’s point of view.

A.3 Debugging The IP

Debugging a custom peripheral on a bus can get tricky. The most efficient way to

troubleshoot is via the ChipScope software suite. There are two primary means of

using ChipScope: the first would be to use the PLB Integrated Bus Analyzer (IBA),

which will automatically provide ChipScope with data, address, and control buses.

For debugging the internals of the user logic, however, the only sensible approach
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is by exporting the desired signals as outputs of your peripheral. This means that

deeply nested signals must traverse the heirarchy (output to output) until they get to

the IPIF interface. From there, the signals need to be designated as device outputs,

and on the embedded system layer, they can then be connected to a generic ChipScope

peripheral.
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