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Why protons? Why now?
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Protons are much better than X-rays
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Conventional X-ray gantries are "'small**

linear accelarator

Banding Magnat
Targets on retractable piston

aning filters om turret

Callimators

Almost all of it is visible
In this photograph!
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Proton gantries appear similar to the patient

But there is a lot more
""behind the wall"'

=13 ¢ rotation
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3 rotation

Paul Scherrer Institute (PSI), Zurich
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Radial distance from gantry axis [m)]
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It's much harder to
bend 250 MeV protons

And the strong-back to
hold 1 mm tolerances Is
formidable

Massachusetts General s Ve
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Hospital (MGH) %E‘
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Where are the facilities? When?

peggs@bnl.gov NSS/MIC, Nov 13, 2002



(7]

Mo

Number of proton therapy facilities
B

High and low patient throughput

— 1997
PSI, Nicse,
i Orsay
Harvard/ Loma Linda
Mass. General Medical Center

200 400 600 800
Number of patients per year

peggs@bnl.gov NSS/MIC, Nov 13, 2002

1000

Loma Linda and MGH
(hospital based facilities)
lead the world in high
patient throughput

The state-of-the-art is
also being pushed in
facilities at national labs
with low throughput
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PSI (Zurich) (left)

- cyclotron source
- part of a national lab
- upgrade in progress

- low throughput, high tech
- new facility in progress

GSI (Darmstadt) (not shown)

- synchrotron
- national lab
- Carbon-12

- new facility at Heidelberg?
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Fixed Beam Isocentric
Delivery System Gantries

Loma Linda (California)

- synchrotron source

- built/commissioned at Fermilab

- world leading patient throughput
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MGH (Boston)

- cyclotron source (IBA) _
- 15t patient Nov 2001 e L
- coming up to speed L,

Energy selection system: Two treatment rooms Third treatment room
degrader followed by with 1socentric gantries with three horzontal beams
analyzing magnets
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Who Couniry Particle Start Recent Date of

Date Patient Total

Total

Moscow Russia p 1969 3414 June-01 The last decade has seen
St. Petersburg Russia p 1975 1029 June-98 . - .
Chiba Japan b o7 133 Apr-00 much construction activity
PS1 (72 MeV) Switzerland p 1984 3360 July-00
Dubna Russia p 1987 88 May-01
Uppsala Sweden p 1989 236 June-00
Clatterbridge England p 1989 1033 Dec-00
Loma Linda, Cal. UsSA p 1990 6174 June-01
Nice France p 1991 1590 June-00
Orsay France p 1991 1894 Jan-01
N.A.C. South Africa p 1993 398 June-01
MPR]1, Indiana USA p 1993 34 Dec-99
UCSF-CNL,Cal. USA P 1994 284 June-00
HIMAC, Chiba Japan jon 1994 917 June-01
TRIUMF Canada p 1995 57 June-00 ] ]
PSL00MeY)  Switzerland  p 1996 There is a national program
GS1 Darmstaclt German jon 1997 - .
Pechn Gy b 1998 in Japan to build proton
NCC, Kashiwa ——Japan b 199 (and Carbon-12) facilities
HARIMAC, Hyogo Japan p. (lon) 2001
INFN-LNS, Catania ltaly p 2001
NPTC - MGH, Mass. USA p 2001
NAC, Faure South Africa p 2001
Tsukuba Japan p 2001
Wakasa Bay Japan 2002
Bratislava Slovakia p.ion 2003
1MP, Lanzhou China C-Ar ion 2003
Shizuoka Japan 2003
Rinecker, Munich  Germany p 2003
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Many sites are (considering) entering the field

Including:

- Karolinska (Stockholm)

- MD Anderson (Houston)
- "TERA" sites (Europe)

- U. Penn (left)

- U. of Florida (Gainesville)

B 2002 Globesplaorer, AirF }:u:: tollShA
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How is BNL involved?

Rapid Cycling Medical Synchrotron (RCMS)
BNL/ACCEL/AES/U. Penn(Physics)

RCMS is a second
generation synchrotron

- rapid cycling (30 Hz)
- strong focusing

- fast extraction

/ffa\ - ultimate flexibility
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The continuous upgrade path
to

precision 3-D multi-field irradiation
of cancerous tumors
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Traditional irradiation: PASSIVE SCATTERING

Gaussian Flattenad Collimator
lluence lluenca U
profile profile
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The sole (slow) variation: beam energy - depth
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Contemporary irradiation: ACTIVE SCANNING

. E‘_Dlelfa[:es
Three variables: dpole &
-H & Vsteering o
- energy e
e
Although "'simpler", Vertical
. . sweep
active scanning has a magnet
- Horizontal
higher controls burden sweep
magnet

fast-kicker { NA3 beam line)
> sweeper magnet

Hybrid schemes are also
practical (PSI, left)
- 1.5 D steering

—» range-shifter - range shifter
patient table

—» beam monitor
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Active scanning - a much improved 3-D conformal dose

Single beam... ( lateral scanning

+ scanning in depth = 3d conformed dose)

(Patient treatment demos courtesy of PSI)
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11 overlapping beam pulses, RMS size 0.5 [cm]

1.2
The basic principles of
overlapping doses are simple T 1
(and surprisingly effective) ... 0el |

... although fully realistic
Patient Treatment Planning is a
complex software challenge ...
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Multiple angles with a water "'phantom™’

One
angle

360
degrees

60 degree coverage

5 | |

—— Protons
_ 4 —— - X-rays _
Ultra-low level collateral 2:
radiation with protons ... 87 :
3
.. if ultimate multi- > 1
dimensional flexibility £ -:
can be achieved !
10 5 0 5 10

Transverse position [cm]
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A treatment planning example (Goitein et al, "Physics Today", Sept '02)

1 field, passive scattering 3 fields, passive

POOR Target outlined in yellow

Critical structures in red

1 field,

§ 3 fields,
active, 4 active,
uniform M uniform
dose W dose

GOOD

Bottom right is much
better than top left!

i
: |
|

1 field of 3, active, 3 of 3 fields, active,
Intensity modulated intensity modulated
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Technology choices
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Which particle?

Some facilities favor light
lons, eg Carbon or Neon

Neutron

- better clinical results ?
- sharper Bragg peak

- ""knock-on"" nuclear
fragments

Proton

- require MUCH more
magnetic field for same
penetration depth

0 2 4 6 8 10 12 14 16 18
Penetration depth in tissue [cm]
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A facility with a
synchrotron source

looks much like one with a
cyclotron source (to a bird)

- similar cost ~ $10 million
- modest fraction of total

But the technical comparison
goes beyond just
"simplicity vs flexibility" ...
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'North’ co—ordinate [m]

20

—

Modern cyclotron features
(ACCEL superconducting cyclotron for RPTC, Munich)

' - Fixed energy output,
at constant current

- Energy degrader
reduces the energy

- Collimators scrape
the beam

- Large "intrinsic"

Switch Yard beam size (emittance)

| | In all 3 dimensions

C
|so—certer
B ollimator 1 |
B5 deg
dipole “
-%.g & E Collimator 3
% 1! llimator 2 30 deg p
?‘ ‘ ml iml ml dlpl n ml ml [ml [m]
65 deg Z0deg
dipole dipcle
|
0 10 20 30

'East’ co—ordinate [m]
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Modern synchrotron features

(Rapid Cycling Medical Synchrotron, RCMS)
(see Cardona et al, N5-5)

Accelerate

e ?ﬁﬁw variable amount of beam
a@f"’“ to a variable energy output

y - No energy degrader
,@f“’ ﬁ-\ ~ - Small intrinsic beam size

\@ EITHER
f& ﬂm}”‘ﬂ - a little beam often,
| P .
Ldygr = e T = extract in 1 turn
ey T e ceren o 7 OR

- a lot of beam rarely,
extract slowly in
many turns

— |I
m o Accelerate
B ’

-
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Proton kinetic energy, K [MeV]

Rapid cycling - energy flexibility

300

200

RCMS "'rings"
like a transformer

- permitting ultimate
energy flexibility

- discrete low intensity
beam delivery

- intrinsic safety!

extract 2
extract 1
100 -
inject 1 inject 2
o | | | |
0 20 40 60 80

peggs@bnl.gov

Time, T [ms]
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Flexible beam size at patient

Small emittances (with synchrotrons)

small beam pipes

light gantries

small transverse beam size

small cross section magnets

flexible spot size at the patient (eg, factor of 10)

0 5 10
Distance along beam line, S [m]

peggs@bnl.gov

15 0
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5 10
Distance along beam line, S [m]
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Energy flexibility
Tvpical diameter
Power consumption

Typical beam size
Typical energy spread

Beam intensity

Beam delivery efficiency
Complexity

Weight

Approximate cost

Other costs

peggs@bnl.gov

Svnchrotron

Very high (fast extraction)
7 m

Low

I mm
< 0.1%

High
= 95%

Flexible
Light
10 M$
Lower

NSS/MIC, Nov 13, 2002

Cyclotron

Fixed (needs degraders)
1m

High {except supercon.)

10 mm
~ 0.5%

Very high
1% — 95%,

Simple

Massive

10 M$
Higher
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Proton Imaging:

- proton driven PET
- proton radiography (<500 MeV)
- proton movies (multi GeV)

NSS/MIC, Nov 13, 2002
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dE/dz (MeV/cm)

Proton driven PET
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; === Coulomb ) ;
- — Coulomb+NMNuclear -
30 - —
oF 3 A small but significant
- : fraction of proton
- - dE/dx loss is due to
N : nuclear interactions
(o L //
i 1 some of which generate
froomTTTTTT E positron emitters
|:| : I - J b 8§ L T J. Ll 1 J LB 1l I (- — J. | J t - :
0 2 4 6 B 10 12 14 16
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Is the (high) therapy dose going to the right place?

16 15 p
P O O
o 0 _
n
15
Occasionally a proton generates an O isotope ...  P|gce a PET camera on the gantry
to observe where such nuclear
15 14 v Interactions occur
O N .7
o 1\. 0 Nuclear cross sections vary rapidly
et with energy ...

... that decays by emitting a positron ... : : :
Interesting work is also going on

with C-12 driven PET, eg at GSI

-+

e WT (see Parodi et al, M7-53)

Y e
... which annihilates with an electron
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Proton Radiography

The protons go through the patient Radiograph of a phantom
Higher energy, small dose Uwe Schneider PhD thesis (PSI)

radiography therapy
Xy

patient
Xy |

range
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The PSI therapy gantry, with prototype detector in place
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Multiple scattering!

Historically, proton radiography
was rejected because multiple
| scattering made blurry images

)

0 10 20 30 41 |:|
Penetration depth in water [cm)] I

200 MeV protons P

Modern reconstruction algorithms
can make sharp images ...

... with knowledge of incoming and
outgoing displacements and angles

Transverse displacement [mm]

0 10 20 30
Penetration depth in water [cm]
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Proton imaging spectrometer

incident :
protons sample

-
-
-t
-

SO SI12 S34 S56
Multiple planes of silicon for position,
angle, and energy measurements
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How might such
a detector be
Implemented?

see
- Sadrozinski, M2-1
- Sadrozinski et al, M6-2
- Yoshida et al, N22-3
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Transmission

0.8

0.6

0.4

0.2

Modern techniques appear to promise ultra-low dose CT !

200 MeV protons

60 keV X—rays

10 20 30

The very steep slope of
~ transmission vs depth allows
‘_/ high sensitivity with few protons ...

... at especially low dose since the
Bragg peak is outside the patient

Penstration depth in water [cm]

Energy flexibility is desirable ...

... but i1s mitigated by the
use of a ""distal bow tie"

Incident p beam v

(see Satogata et al, M10-204)

Detector

167 MeV p beam dose deposition

i
-'.. 1
- --- II.
-
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Proton Movies (multi-GeV)
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Lensing system (4 to 24 GeV) in place at BNL - not on a gantry!

peggs@bnl.gov
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Proton radiograph with a multi-GeV beam (Los Alamos)
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Sub-millimeter resolution
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Stills from a movie of a mock "'device" imploding (Los Alamos)

parr:al pv-::mlum::
3.25 usec
Measured density

2.50 usec “ [T Burn front
1.90 psec

1 I~ t=0.0 psec

- —t=25 psac
0.99 USCC 3 2 1.0 1 2 3 4

x[cmi)

Can also see combustion fronts inside gasoline engines, ramjets, ...
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Summary

1) First generation proton therapy facilities are now ""proven"’
technology

2) They are one (or more) orders of magnitude more complex,
and expensive, than conventional (electron/photon) facilities

3) Second generation proton therapy accelerators are arriving
In force

4) For a few dollars more, put proton imaging on a gantry?
a) proton driven PET high therapy dose QA
b) radiography low dose CT

5) What does the optimal radiography detector look like?
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