

Proton Accelerators for Therapy & Imaging

Steve Peggs, BNL

Contents

Why protons? Why now?

Where are the facilities? When?

Precision 3-D multi-field irradiation of cancerous tumors

Technology choices

Proton Imaging

proton driven PET radiography movies

Why protons? Why now?

Protons are much better than X-rays

Conventional X-ray gantries are "small"

Almost all of it is visible in this photograph!

Proton gantries appear similar to the patient

Paul Scherrer Institute (PSI), Zurich

It's much harder to bend 250 MeV protons

And the strong-back to hold 1 mm tolerances is formidable

Massachusetts General Hospital (MGH)

Where are the facilities? When?

High and low patient throughput

PSI (Zurich) (left)

- cyclotron source
- part of a national lab
- upgrade in progress
- low throughput, high tech
- new facility in progress

<u>GSI (Darmstadt)</u> (not shown)

- synchrotron
- national lab
- Carbon-12
- new facility at Heidelberg?

Synchrotron Beam Transport System

Loma Linda (California)

- synchrotron source
- built/commissioned at Fermilab
- world leading patient throughput

MGH (Boston)

- cyclotron source (IBA)
- 1st patient Nov 2001
- coming up to speed

Who	Country	Particle	Start	Recent Date of	
			Date	Patient Total	
				Total	
Moscow	Russia	Р	1969	3414 June-01	The last decade has seen
St. Petersburg	Russia	р	1975	1029 June-98	much construction activity
Chiba	Japan	р	1979	133 Apr-00	much construction activity
PS1 (72 MeV)	Switzerland	Р	1984	3360 July-00	
Dubna	Russia	р	198 7	88 May-01	
Uppsala	Sweden	р	1989	236 June-00	
Clatterbridge	England	р	1989	1033 Dec-00	
Loma Lìnda, Cal.	USA	р	1990	6174 June-01	
Nice	France	р	1991	1590 June-00	
Orsay	France	р	1991	1894 Jan-01	
N.A.C.	South Africa	р	1993	398 June-01	
MPR1, Indiana	USA	р	1993	34 Dec-99	
UCSF - CNL, Cal.	USA	р	1994	284 June-00	
HlMAC, Chiba	Japan	ìon	199 4	917 June-01	
TRIUMF	Canada	р	1995	57 June-00	
PS1 (200 MeV)	Switzerland	р	1996	72 Dec-00	There is a national program
GS1 Darmstadt	Germany	ìon	199 7	84 June-01	in Japan to build proton
Berlin	Germany	р	1998	166 Dec-00	m Japan to build proton
NCC, Kashiwa	Japan	р	1998	75 May-01	(and Carbon-12) facilities
HARIMAC, Hyogo	Japan	p, (ìon)	2001		(und curbon 12) fucilities
1NFN-LNS, Catanìa	Italy	р	2001		
NPTC - MGH, Mass.	USA	р	2001		
NAC, Faure	South Africa	р	2001		
Tsukuba	Japan	р	2001		
Wakasa Bay	Japan		2002	— /	
Bratislava	Slovakia	p, ìon	2003		
1MP, Lanzhou	China	C-Ar ìon	2003		
Shìzuoka	Japan		2003		
Rinecker, Munich	Germany	р	2003		

Many sites are (considering) entering the field

Including:

- Karolinska (Stockholm)
- MD Anderson (Houston)
- "TERA" sites (Europe)
- U. Penn (left)
- U. of Florida (Gainesville)

How is BNL involved?

Rapid Cycling Medical Synchrotron (RCMS)

BNL/ACCEL/AES/U. Penn(Physics)

RCMS is a second generation synchrotron

- rapid cycling (30 Hz)
- strong focusing
- fast extraction
- ultimate flexibility

The continuous upgrade path to precision 3-D multi-field irradiation of cancerous tumors

Traditional irradiation: PASSIVE SCATTERING

The sole (slow) variation: beam energy \rightarrow depth

Contemporary irradiation: ACTIVE SCANNING

Hybrid schemes are also practical (PSI, left) - 1.5 D steering

- range shifter

Active scanning - a much improved 3-D conformal dose

Single beam...

(lateral scanning

+ scanning in depth = 3d conformed dose)

(Patient treatment demos courtesy of PSI)

NSS/MIC, Nov 13, 2002

The basic principles of overlapping doses are simple (and surprisingly effective) ...

... although fully realistic Patient Treatment Planning is a complex software challenge ...

Fourth dimension: intensity (left) Fifth dimension: field angle (over)

Multiple angles with a water "phantom"

One angle

360 degrees

Ultra-low level collateral radiation with protons ...

... if ultimate multidimensional flexibility can be achieved !

A treatment planning example (Goitein et al, "Physics Today", Sept '02)

1 field, passive scattering

3 fields, passive

1 field of 3, active, intensity modulated **3 of 3 fields, active, intensity modulated**

peggs@bnl.gov

NSS/MIC, Nov 13, 2002

21

Technology choices

Which particle?

Cyclotron or Synchrotron source?

Modern cyclotron features

(ACCEL superconducting cyclotron for RPTC, Munich)

Fixed energy output, at constant current

- Energy degrader reduces the energy
- Collimators scrape the beam
- Large ''intrinsic'' beam size (emittance) in all 3 dimensions

Modern synchrotron features

(Rapid Cycling Medical Synchrotron, RCMS) (see Cardona et al, N5-5)

Accelerate variable amount of beam to a variable energy output

- No energy degrader
- Small intrinsic beam size

Accelerate EITHER

- a little beam often, extract in 1 turn
 OR
 - a lot of beam rarely, extract slowly in many turns

Rapid cycling - energy flexibility

Flexible beam size at patient

Small emittances (with synchrotrons)

- small transverse beam size
- small beam pipes
- small cross section magnets
- light gantries
- flexible spot size at the patient (eg, factor of 10)

Synchrotron

Cyclotron

Energy flexibility	Very high (fast extraction)	Fixed (needs degraders)
Typical diameter	7 m	4 m
Power consumption	Low	High (except supercon.)
Typical beam size Typical energy spread	1 mm < 0.1%	$10 \mathrm{~mm}$ $\sim 0.5\%$
Beam intensity Beam delivery efficiency	m High > 95%	Very high 1% — 95%
Complexity	Flexible	Simple
Weight	Light	Massive
Approximate cost	10 M\$	10 M\$
Other costs	Lower	Higher

Proton Imaging:

- proton driven PET
- proton radiography (< 500 MeV)
- proton movies

(< 500 MeV) (multi GeV)

Proton driven PET

Is the (high) therapy dose going to the right place?

... that decays by emitting a positron ...

... which annihilates with an electron

Place a PET camera on the gantry to observe where such nuclear interactions occur

Nuclear cross sections vary rapidly with energy ...

Interesting work is also going on with C-12 driven PET, eg at GSI

(see Parodi et al, M7-53)

Proton Radiography

The protons go through the patient Higher energy, small dose

Radiograph of a phantom Uwe Schneider PhD thesis (PSI)

The PSI therapy gantry, with prototype detector in place

Multiple scattering!

Penetration depth in water [cm]

peggs@bnl.gov

Proton imaging spectrometer

How might such a detector be implemented?

see

- Sadrozinski, M2-1
- Sadrozinski et al, M6-2
- Yoshida et al, N22-3

Modern techniques appear to promise ultra-low dose CT !

Energy flexibility is desirable ...

... but is mitigated by the use of a "distal bow tie"

(see Satogata et al, M10-204)

The very steep slope of transmission vs depth allows high sensitivity with few protons ...

... at especially low dose since the Bragg peak is outside the patient

Proton Movies (multi-GeV)

Lensing system (4 to 24 GeV) in place at BNL - not on a gantry!

Proton radiograph with a multi-GeV beam (Los Alamos)

Sub-millimeter resolution

Stills from a movie of a mock "device" imploding (Los Alamos)

Can also see combustion fronts inside gasoline engines, ramjets, ...

NSS/MIC, Nov 13, 2002

Summary

- 1) First generation proton therapy facilities are now "proven" technology
- 2) They are one (or more) orders of magnitude more complex, and expensive, than conventional (electron/photon) facilities
- 3) Second generation proton therapy accelerators are arriving in force
- 4) For a few dollars more, put proton imaging on a gantry?
 a) proton driven PET high therapy dose QA
 b) radiography low dose CT
- 5) What does the optimal radiography detector look like?