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Abstract--After defining the multiplication factor and the ionization rate together with their interrelation- 
ship, multiplication and breakdown models for diodes and MOS transistors are discussed. Different 
ionization models are compared and test structures are discussed for measuring the multiplication factor 
accurately enough for reliable extraction of the ionization rates. Multiplication measurements at different 
temperatures are performed on a bipolar NPN transistor, and yield new electron ionization rates at 
relatively low electrical fields. An explanation for the spread of the experimental values of the existing 
data on ionization rate is given. A new implementation method for a local avalanche model into a device 
simulator is presented. The results are less sensitive to the chosen grid size than the ones obtained from 
the existing method. 

i. INTRODUCTION 

Impact ionization is an important charge generation 
mechanism. It occurs in many semiconductor devices 
and it either determines the useful characteristic of 
the device or it causes an unwanted parasitic effect. 
Let us first consider bipolar devices. The break- 
down voltage V b of a silicon p-n diode is caused by 
impact ionization if Vb is larger than about 8 V. The 
temperature coefficient of Vb is then positive. For 
breakdown voltages smaller than about 5 V, the 
breakdown is caused by tunneling. The temperature 
coefficient of Vb is then negative. In diodes with a 
breakdown voltage between 5 and 8 V, both mech- 
anisms contribute to the breakdown and V b is more 
temperature insensitive, improving the properties of 
a Zener diode, as a reference voltage. 

The operation of some devices is based on 
avalanche generation. This is the case for a thyristor 
and for an impatt diode. In an avalanche photo- 
detector, the internal multiplication is used to 
increase the signal to noise ratio of the total detector 
system, although avalanche generation produces 
its own noise due to its statistical behaviour, as 
explained by McIntyre[1] and Webb[2]. 

Avalanche generation also plays an increasing 
role in MOS devices. By scaling down the geometrical 
dimensions while keeping the supply voltage con- 
stant, the electrical field increases and therefore 
impact ionization plays a more important role in 
device degradation due to hot-carrier effects and 
bipolar parasitic breakdown. Indeed the hot-carrier 
degradation phenomena are caused by the electron- 
hole pairs generated in the high-field drain region of 
the MOSFET resulting in substrate and in gate 
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currents. Due to hot-electron trapping in the oxide, 
the threshold voltage V T of the transistor will shift in 
time and cause reliability problems. Substrate cur- 
rents can cause bipolar action (latch-up or snap-back) 
of the MOS transistor. Also breakdown of the drain- 
substrate junction becomes more important because, 
due to scaling, the substrate doping must increase in 
order to avoid punch-through in the device. Many 
of these problems can be overcome by using LDD- 
structures, which have a lower electrical field at the 
drain side, resulting in a lower generation rate. 
Computer simulation on a specific example shows 
that a reduction of the peak electrical field by about 
40% results in a reduction of the generation rate by 
a factor of one thousand. 

In Section 2, the ionization rate and the multipli- 
cation factor together with their interrelationship are 
defined. In Section 3, different multiplication and 
breakdown models are discussed while in Section 4 
different ionization models are compared. In Section 
5, the parameter extraction procedure for fitting the 
physical and empirical parameters of the avalanche 
generation model to the multiplication data on a 
bipolar transistor at different temperatures is studied. 
New ionization rate data is given. In Section 6, we 
discuss the implementation of an avalanche model 
into a device simulator. A new implementation 
method, insensitive to the mesh, is introduced. 

2. DEFINITION OF THE IONIZATION RATE AND 
OF THE MULTIPLICATION FACTOR 

The ionization rate g is defined as the number of 
electron-hole pairs generated by a carrier per unit 
distance travelled. It is different for electrons (~,) and 
for holes (ap). Impact ionization can only occur when 
the particle gains at least the threshold energy for 
ionization E i from the electrical field. From the 
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application of the laws of conservation of energy and 
of momentum at a collision event, it can be derived 
that a minimum energy of 1.5 E~, with Eg being the 
bandgap, is needed if the effective masses of both 
holes and electrons are assumed equal• A large spread 
of experimental values for E~ exists. In general, the 
ionization rates (~,.p) depend on the probability for 
the carriers to reach this threshold energy and this is 
not only a function of the local electrical field but also 
of the "history" of the particle; a "non-local" ioniz- 
ation model thus should be used. As a first approxi- 
mation a local model is given in which the ionization 
rate depends only on the local electrical field. The 
most commonly used local avalanche generation 
model is the empirical expression of Chynoweth[3], 
which is similar to the expression for ionization rates 
in gases: 

o~ , , . p= o t ,~ ' pexp ( ~ )  (1) 

with ~2p and b,,.p the ionization coefficients and Ej the 
electrical field component which can be expressed 
mathematically as: 

E.3  
E + - I J l "  (2) 

As can be observed, ~ ~ is the maximum number of 
carriers that can be generated per unit distance at 
very high electrical fields. The avalanche generation 
term is used in the current continuity equations as: 

VJ~,p = +q(G~.z, - R..~) (3) 

with J.,e the current density for electrons respectively 
for holes and with G.,p the generation and R.,p the 
recombination term for electrons and for holes. The 
plus sign has to be used for holes and the minus sign 
for electrons. The generation term for avalanche 
generation can be written as: 

G°. _~,,IJ.I ~p14,1 4 (4) 
q q 

It is through these equations that the avalanche 
generation term is built into a device simulator, 

The multiplication factor M is defined as the ratio 
of the current of one kind (electrons or holes) 
JovT,~,.p) coming out of a volume to the current of the 
same kind, J~N.~,.,), flowing into that volume: 

M. p - Jouv. t.,p~. (5) 
• JIN, (n, pt 

In one dimension, the relationship between multi- 
plication and avalanche generation can easily be 
found by solving the above continuity equation, 
neglecting the recombination term and knowing that: 

"/TOT = J,(x) + Jp(x) (6) 

with JTm the total current which must be constant in 
space. For electrons, as incident carriers[4-6]: 

JL _, 
E(x) 

Jout ,n  ,.~ 

J in ,p  

0 W 

Fig. 1. Simple one-dimensional picture for defining multipli- 
cation within a certain region W where a high electrical field 
exists. The sum of hole and electron current must be 

constant. 

1 
M, = w .~ (7) 

l-C o -exp (-fo 
and for holes as incident carriers: 

1 
M, = w w (8) l-fo % e x p ( - f , .  ( , % - ~ . ) d x ' ) d x  

where W is the width of the avalanche region as 
shown in Fig. 1. If a hole and electron current are 
coming into this region simultaneously, the multi- 
plication of both current components must be 
added. 

Breakdown is obtained when M ~ w or when: 

;7 ( ;  ) ~,exp - ( ~ , - % ) d x '  d x = l .  (9) 

Extracting the ionization coefficients from multipli- 
cation measurements is not trivial. Indeed, in eqn (7) 
the integrals cannot be obtained analytically when the 
electrical field is not constant, which is the case in 
most devices. The numerical calculation of the inte- 
gral can be simplified assuming that 7 = (%/~,) is a 
constant as a function of field, which is valid if the 
electrical field does not change to much as pointed 
out by Van Overstraeten and De Man in Refs [7,8]. 
If the field changes appreciably, the 7 ratio should be 
taken at the highest field value, because multipli- 
cation occurs predominantly there. Another difficulty 
is the fact that the electron and hole ionization 
coefficients are always appearing together in the 
equation even when the injected current is of only one 
type. Parameter extraction therefore is difficult. Yet 
another source of error is the calculation of the 
electrical field as a function of distance because the 
exact doping profile, especially at the junction, must 
be known. This doping profile can be obtained from 
C - V  measurements as is explained in Refs [4,8,9] or 
directly out of SRP or SIMS measurements. It should 
be born in mind, however, that each of these tech- 
niques suffers from inaccuracies. The determination 
of the peak electrical field must be very accurate 
because of the strong dependence of the generation 
rate on the electrical field. 

As pointed out by Beni and Capasso[10] there is 
also a difference between the increase in current and 
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the increase in the number of generated electron-hole 
pairs because 

Mn p = Jour,(.,p) _ VOUT NOUT (10) 
' J IN , (n ,p )  FIN NIN 

with VIN(VouT) the carrier velocities and NIN(NouT) 
the carrier concentrations at the input (output) of 
the avalanche region. The multiplication factor is 
due only to pair production (increase in number of 
carriers), if the carrier velocity is assumed constant 
over the avalanche region. This is not always true 
and the difference becomes more pronounced for 
relatively low electrical fields and for highly doped 
regions. Only measurements of the multiplication 
factor on a P - I - N  structure would eliminate the 
influence of the carrier velocity. If multiplication 
is simulated with a device simulator assuming a 
constant mobility, the result cannot directly be 
related to the number of generated electron-hole 
pairs because the velocity increases linearly with 
electrical field. 

Different approaches to predict the multiplication 
factor and the breakdown voltage for a given doping 
profile and structure will be presented in the next 
section. 

3. MULTIPLICATION AND BREAKDOWN MODELS 

Instead of using elaborate numerical calculations, 
it often is useful to have an empirical expression 
which predicts the multiplication factor of a structure 
as a function of applied voltage. 

3.1. Bipolar diodes 

As an example, Miller[5] proposed an empirical 
formula for the total multiplication factor of a diode 
as a function of applied voltage: 

1 ( ~ )  ~ 
1 - ~  = (11) 

with Vb the breakdown voltage, n an empirical 
parameter and M defined as: 

Z(V) 
U = - -  02)  

I0 

with I 0 the saturation current of the diode[ll] .  This 
relationship holds well for relatively low breakdown 
voltages, but there is a significant departure for 
breakdown voltages with an internal field strength 
below about 350kV/cm. Leguerre[12] used the 
empirical Miller expression to predict the multipli- 
cation factor near breakdown by relating the slope 
factor n to the different materials and substrate 
dopings. 

Fulop[13] proposed the following empirical expres- 
sion for the ionization rate: 

ct = C ( E )  g (13) 

with C and g constants which are given for silicon. 
Using this expression, the breakdown voltage for 
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abrupt and graded junctions can be calculated 
analytically from the multiplication integral. 

Other expressions for the diode breakdown voltage 
as a function of the doping profile were proposed by 
several authors[14-17]. 

Also relations exist to calculate the breakdown 
voltage of planar junctions with curved edges[18-22] 
or with field plates[23,24]. The avalanche injection in 
gate-controlled diodes[25-29] and some transient 
effects[30] are also studied. 

3.2. M O S  transistors 

Finding the values of the multiplication factor in 
the drain region of an MOS transistor as a function 
of gate length and of applied voltage is an important 
but difficult task. Avalanche multiplication generates 
the substrate current and part of the gate leakage 
current. Predicting the multiplication factor analyti- 
cally is difficult because the electrical field in the drain 
region has a 2-D character. The validity of a local 
avalanche generation model as implemented in most 
device simulators is questionable, since the voltage 
drop over the avalanche region is rather small com- 
pared to (Ei /q) ,  as will be discussed in Section 4 and 
since the gradient of the electrical field is very high at 
the drain side. Both these conditions violate the 
applicability of a local model as is explained more 
extensively in Section 4. A large number of papers 
deal with the prediction of MOSFET break- 
down[31-49]. 

3.3. Test  structures f o r  measuring ionization rates 

An important topic is the choice of the test struc- 
ture used to measure the multiplication factor and to 
extract the ionization rates. The most commonly used 
structure is a reverse-biased diode in which photons 
generate the carriers necessary to initiate the ioniza- 
tion process[8,9,50]. This method is, however, not 
sensitive enough for measuring very low values of 
multiplication and thus for determining ionization 
coefficients at tow electrical fields. For  this reason, 
it is more appropriate to use a test structure which 
has an internal gain factor for the generated 
current. Sayle[51] proposed a JFET structure where 
the initiating current comes from the channel and 
the generated current is measured in the gate. The 
problem here is the uncertainty about the electrical 
field distribution in the avalanche region of the 
channel. Another interesting device described in 
Section 5 is the bipolar transistor where the base-  
collector junction acts as the avalanche region. This 
structure has two major advantages: the current 
injected by the emitter can be controlled exactly and 
second the multiplication can be measured fl times 
more accurately, fl is the current gain of the transis- 
tor. This is because the avalanche generated current 
is superimposed on the base current, which is fl times 
smaller than the current injected by the emitter and 
which initiates the generation process. Slotboom[52] 
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used a bipolar structure for determining the ioniz- 
ation rate and also a CCD structure with which very 
small multiplication factors can be detected because 
the charge packet is multiplied in a serial shift 
register. 

4. T H E  D I F F E R E N T  A V A L A N C H E  I O N I Z A T I O N  M O D E L S  

In a local model, the ionization rate depends only 
on the local electrical field and can be written as 

ct (xi) = f[E (xi)]. (14) 

For a local model to be valid, two conditions must be 
fulfilled: (i) every individual carrier has to sample a 
large number of values throughout the whole mo- 
mentum probability distribution within a distance 
that is small compared to the mean distance between 
ionizing encounters and (ii) this distance also has to 
be small compared to the distance in which the 
electrical field changes by an appreciable amount. 
The first condition implies that the total voltage drop 
over the avalanche region must be several times 
(El~q). If one of the above conditions is not satisfied, 
the "history" of the particle should be taken into 
account for calculating the ionization probability at 
any location. 

The objective of the theory of impact ionization is 
to derive the probability for an electron to gain from 
the electrical field an energy at least equal to the 
threshold energy E~. In the diffusion model of 
Wolff[53], the electron gains the energy gradually 
through many collisions. In solving the Boltzmann 
transport equation, he retains the first two terms in 
the Legendre polynomial expansion of the energy 
distribution function, and obtains 

ct oc exp (15) 

where A is a constant. 
Shockley[54] argues that the electrons gaining 

enough energy from the field are the ones that are 
lucky enough to avoid collisions. This theory yields: 

- E i 
~zc exp ( q ~ )  (16) 

with l the mean free path. 
In the theory of Baraff[55,56], higher-order terms 

of the Legendre polynomial expansion of the distri- 
bution function could be retained by using a trunc- 
ation technique based on the principle of maximum 
anisotropy. He uses three independent parameters, 
namely the mean free path, the threshold energy and 
the energy loss per phonon collision. He also assumes 
a constant mean free path for both optical phonon 
and impact ionization scatterings. In the low field 
region, this theory agrees with Shockley's model and 
in the high field region with the results of Wolff. 

Based on the work of Okuto and Crowell[57] and 
of Baraff, Thornber[58] derived an expression for the 
ionization rate valid for all field strengths: 

o~ (E) =(qE)~_i exp ( ( E  l +--EifffrrE) + E k T ) ( 1 7 )  

with E~ the field for which phonon energy is reached 
in one mean free path, Ekr the field for which the 
thermal energy kT is reached in one mean free path, 
and Eif the field for which the threshold energy for 
ionization is reached in one mean free path. The 
expression reduces to: 

E<EkT ~(E)~(q~ i )  

EkT < E < Er ~(E) .~ --~i 

(qE) E~<E ~(E)~ ~, 

- Ei) 
exp ~ -  

(Thermal) (18) 

(Shockley[54]) (19) 

(Wolff[53]) (20) 

for different electrical field ranges. 
Thornber used the data published by several 

authors to extract parameters for his model. He 
found a good agreement between the field parameters 
for the data of Van Overstraeten and De Man[4], 
Woods[59] and Grant[60] for electrons. For holes, the 
agreement is not very good. For  the effective 
threshold energy, he found high values (3.6 eV for 
electrons and 5-6.2eV for holes). This effective 
threshold energy thus lies well above the nominal one. 
With respect to the exact values of the parameters, 
some criticism should be made. Thornber indeed 
calculated the parameters from ~,.p data, extracted 
from the multiplication data using the Chynoweth 
approximation. The correct way would be to use the 
Thornber expression in the multiplication integral 
and to fit it to the measured multiplication data. 

Recently also the lucky electron model of Shockley 
has been extended and made suitable for use in a 
non-local model. Ridley[61-63] differentiated be- 
tween the rate of momentum and of energy relax- 
ation, and proposed a lucky drift model which is 
intermediate between the Shockley and the Wolff 
model. His results agree well with the ones of Baraff 
over four orders of magnitude. This model was 
further improved by Woods[64,65] and Marsland[66] 
by introducing the concept of "soft threshold en- 
ergy". Childs[67,68] also includes the effect of field 
variation over the "dead" space. Chen and Tang[69] 
use the theory of Keldysh[70], who solved Boltzmann 
transport equation involving phonon scattering and 
impact ionization scattering. Chen and Tang derive 
an explicit expression for the energy mean free path 
which allows the calculation of Keldysh's energy 
distribution function. They find a good agreement 
with the theory of Baraff and of Ridley. They have 
only one fitting parameter l(EO, characterizing the 
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continuous transition from the phonon assisted im- 
pact ionization to the phononless impact ionization. 
This mean free path parameter has reasonable values 
(around 70 A for electrons and 50 A for holes). 

To obtain correct simulation results, a non-local 
generation model should be used in a device simula- 
tor because the history of the particle has to be taken 
into account. Attempts are made to use the Monte 
Carlo technique within a device in the high field 
region[71]. The recent models discussed above have 
also tried to account for the "dark space" using the 
lucky drift theory as a post-processing option. As an 
example for a non-local model, Childs[68] calculates 
the probability that an electron acquires the ioniz- 
ation threshold energy after travelling a distance z~ as: 

P(zi)=ff'exp(-~-~) 
(f"i(zi-z"]dz"] dz (21) 

xexp - z \ 2 e ( E ) ]  2 ,] 2 

where ;t and 2 E are the mean free paths for momen- 
tum and energy-relaxing collisions. The ionization 
rate is therefore characterized by summing the prob- 
abilities for electrons to drift to the ionization 
threshold energy as they travel along the channel. 

The disadvantage of this method is that it already 
requires an expression for the electrical field along the 
channel in order to be able to evaluate the probabil- 
ities. Other authors[72,73] use other probability func- 
tions and show simulation results on MOS devices. 

Various authors have extracted coefficients for 
the Chynoweth model from their multiplication 
measurements, e.g. McKay[74,75], Miller[5], Chyno- 

weth[3,76], Lee[77], Moi1178,79], Ogawa[80], Van 
Overstraeten[8], Grant[60], Dalal[81] and Woods[59]. 
Their results are summarized in Fig. 2 for electrons 
and in Fig. 3 for holes (from Ref. [82]). Additionally 
the results are compared with theoretical calculations 
of Baraff[55,56] with material constants coming from 
Sze[83,84]. Also shown are the theoretical limits 
published by Okuto[57,85] which assume that all the 
energy the carriers can gain from the field is used to 
generate other carriers when the threshold energy for 
ionization is supposed to be 1.6 eV for electrons and 
1.8eV for holes as predicted by Hauser[86]. All 
authors find different parameter couples ( . ,p, b,.p) 
for the Chynoweth expression to fit their data; as it 
will be explained in Section 5, this can be caused by 
a correlation which seems to exist between the 
parameters ~ and b, for a given data set. The 
parameter values of Van Overstraeten and De Man 
are mostly used and seem to give the best simulation 
results. They extracted their parameters out of a large 
set of different diodes which automatically optimizes 
their parameter set for a large number of electrical 
field profiles as also explained by M~nduteanu[87]. 

Slotboom[52] extracted avalanche ionization co- 
efficients for the Chynoweth expression at the surface 
of an MOS transistor where the generation is smaller 
due to the roughness of the interface. 

Expressions for the temperature dependence of the 
ionization rate are given by Crowell and Sze[88]. 
They are in good agreement with the theoretical 
calculations of Baraff[55]. As the temperature in- 
creases, the probability for the carriers to reach the 
threshold energy becomes smaller, and the break- 
down voltage increases. The temperature dependence 
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Fig. 3. Log(%), given by the Chynoweth model, as a function of electrical field, extracted by various 
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of the ionization rates is smaller at higher electrical 
fields. Sutherland[89] found another approximation 
for the theoretical Baraff curves. 

A dependence of ionization rate on crystal orien- 
tation has not been found[74,77,90]. 

5. MULTIPLICATION MEASUREMENTS ON A BIPOLAR 
TRANSISTOR. EXTRACTION PROCEDURE FOR THE 

IONIZATION RATE 

5. I. General remarks about parameter extraction 

From experimental values for the multiplication 
factor and from an ionization model, it is possible to 
extract the ionization coefficients from the measured 
data set. Parameter extraction can be seen as the link 
between the real physical world (measurements on 
test structures) and the simulation world (the ioniz- 
ation model with its parameter values in a device 
simulator). The task of the extraction program is to 
find a parameter set for the model which minimizes 
an error function. This error function is in most cases 
the root mean square value of the relative differences 
defined as: 

-- ~ ( Si(O)- M'~ 21 (22) 

with Mt the measured value of the multiplication 
factor for the biaspoint i, Si(O) the calculated multi- 
plication factor for a given parameter vector 0 of the 
ionization model for bias condition i while N is the 
number of datapoints. Minimizing this function gives 
the optimal parameter set for the given data set and 
given error criterion. It is sometimes preferable to 
choose a different criterion. If, for example, the 
measured data set extends over several orders of 

magnitude, it is more desirable to take the deviation 
of the logarithm of the measured quantity. If the 
obtained coefficient values are implemented in a 
device simulator, the user must be aware that his 
simulation results are only valid for the field interval 
out of which they were extracted. 

Good starting values for the fitting process are also 
important because the residual plane defined by eqn 
(22) can have more than one minimum, especially if a 
large number of parameters are fitted simultaneously. 
Depending on the starting values for the iteration, the 
fitting algorithm will go to the nearest minimum even 
if this is a local instead of the global minimum. We 
used our general purpose parameter extraction pro- 
gram SIMPAR[91] for the extraction procedure. 

Next to finding the optimal parameter values, 
another important aspect is the calculation of the 
sensitivity of the different parameters, especially if 
these values are used for explaining physical phenom- 
ena. The shape of the residual plane around the 
minimum tells us how much a parameter may vary in 
order to increase the residual by a certain amount. It 
also informs us on how the parameters are correlated 
to each other. This can be calculated by approxi- 
mating the residual function by an ellipsoid around 
the minimum as explained briefly in Appendix A. We 
will apply this theory to the measurements on our 
bipolar test structure. 

5.2. Experimental results 

A special N P N  bipolar test structure was developed 
for the purpose of measuring multiplication factors at 
relatively low electrical fields. As already described in 
Section 3, the bipolar transistor is an appropriate 
structure for measuring low multiplication factors 
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Fig.  4. D o p i n g  profi le  o f  the  b i p o l a r  t r an s i s t o r  o b t a i n e d  wi th  
SRP measurement together with the calculated electrical 
field in the base-collector region for two different values of 

because of  its internal gain factor. The transistor is 
processed on an N / N  + epi-wafer. The doping 
profile of  the base-collector region, obtained with 
SRP-measurements,  together with the calculated 
electrical field distribution for two different Vac bias 
voltages, is shown in Fig. 4. This structure allows the 
measurement of  the multiplication factor at relatively 
low electrical fields (8.0 x 104-1.5 x 105 V/cm). The 
N -  region has a doping level of  about  4.0 x 1014 cm -3 
and extends over almost 8 #m. The structure breaks 
down at the edges for a VBc value of  about 100V. 

For  the measurement, a constant emitter current is 
injected and the base current is measured for different 

I Le = 200boa NPN bipolar transistor 

~'~ 5"0 x 10-7 - -0 .0  -- 

-5.0x10 -7 I I I I I 
50 60 70 80 90 100 

Vbc ( Volt  1 

Fig. 5. Measured base current as a function of Vb¢ for a 
constant emitter current of 200/~A. AI b is a measure for the 

multiplication factor, as given by eqn (23). 

Table 1. Extracted ionization parameters for the bipolar 
transistor measurements at different temperatures 

Temp Residual 
(°c) ~ b, (%) 

10 3.010 x 105 1.135 x 106 0.5 
40 3.318 x 105 1.174 x 106 1.5 
70 2.990 x l05 1.186 x l06 0.9 

100 3.593 x 105 1.229 x 106 3.4 
130 2.951 x 105 1.225 x 106 0.3 
160 2.428 x 105 1.216 × 106 0.6 

Although the fitting residual is very low, no direct 
relationship between the fitted parameter values as a 
function of temperature is observed. 

Vac values. The value of  the current is not critical as 
long as the mobile carriers do not disturb the elec- 
trical field in the collector junction. The electrons 
injected into the collector space-charge region create 
electron-hole pairs. The holes travel back and the 
current they generate is superimposed on the base 
hole current, causing the measured base current to 
decrease as indicated in Fig. 5. This decrease in base 
current A/B, is a direct measure of  the generated 
current if  the influence of  base modulat ion is negli- 
gible, which is the case for our structure. The decrease 
AI B can be expressed as: 

AIa(VBc ) = IE[M(Fac) - 1] (23) 

with I E the injected current in the emitter. These 
measurements were performed at different tempera- 
tures between l0 and 160°C, allowing us to investi- 
gate the temperature dependence of  the ionization 
coefficients. 

Our parameter extraction program SIMPAR[91] 
finds a very low sensitivity for the hole ionization 
coefficients which appear in the multiplication inte- 
gral. This is normal because the ionization prob- 
ability for holes is much lower than for electrons, 
especially for low electrical fields. For  this reason, 
only the ionization rates for electrons are extracted. 
The extraction results at different temperatures are 
summarized in Table I. It can be observed that 
the fitting error is very low. The dependency of  
the coefficients on temperature will be discussed 
in the next subsection. Around room temperature 
(40°C), the results of  Van Overstraeten and De 
Man[8] and the newly obtained ionization coefficients 
are shown in Fig. 6. The new results extend the 
older data to lower electrical fields. The agreement 
with the extrapolated Van Overstraeten and De Man 
data is excellent. Also the recent data of  Slotboom 
et al. in the intermediate electrical field range are 
shown. They used also a bipolar transistor to deter- 
mine the low multiplication values and their data are 
also in agreement with our data. 

5.3. Discussion o f  the obtained extraction results 

As shown in Figs 2 and 3, different authors find 
strongly different ionization coefficients as optimal 
parameter values for their measurements. A possible 
explanation for this discrepancy can be the inter- 
action between the two coefficients ~t ~ and b for a 
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1.0x105 ~ Von O ~ e n  ond De Mon 

1.0 x 104 
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= i,~ Slotboom et at 
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t.O x 101 ~ e s u  tts 
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I I I 
2.0 x 105 1.0 x 105 
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Fig. 6. This plot shows the Chynoweth expression as a 
function of electrical field for electrons with the ionization 
coefficients obtained by Van Overstraeten and De Man[8], 

Slotboom[52] and our new results. 

given data set. Because there is always an uncertainty 
in the measurements,  different parameter combi- 
nations can give a fitting error which falls within this 
uncertainty region. As an illustration, we take our 
measurements on the bipolar transistor at room 
temperature (4ffC) and fit the parameter b, for 
different fixed values of  ~ , ' .  The relationship shown 
in Fig. 7 is obtained. On this line and between the 
points marked by U and W the residual is always less 
than 8%. This 8% residual value is chosen rather 
arbitrarily but can be considered as realistic for the 
uncertainty in the measurements. The best fitting 
result (residual of  about  0.5%) is indicated by 
the point V. It must be pointed out that this "low- 
residual" line is well defined, meaning that small 
deviations for the parameter values from this line give 
large fitting errors. 

In Fig. 8, the typical % vs I/'E plot is shown 
together with the boundaries of  the region of  uncer- 
tainty. The full line gives us the Chynoweth expres- 
sion with the best fitted parameter  set (point V in 
Fig. 7) while the dashed lines indicate the Chynoweth 
expression for points U and W in Fig. 7. It is the full 

1~ xlO 6 
\ 

w 

1.2x106 

,..;, 
- \ 
.~ 1.0x10 6 

u 
Q 8 x 1 0 6  I t I I I l l l l l  [ I I I l i l l l  I I I ~ l [ l l ]  

I O x l O  4 1,0X105 1.0X106 I O x l O  z 

Log (an~),  crn-'~ 

Fig. 7. All parameter couples lying on the indicated line 
between U and W have a residual of less than 8% while the 
point V gives the lowest residual (0.5%). This line is sharply 
defined for the given test structure and data set, meaning 
that small deviations from it will result in a very high 

residual value. 

1.0x 103 

1.0 x 102 " " ~ ,  

~ " ~  Res = 8 % 

~ x ~ ,  Res = °5 °/° 

IOxi0 -I ~ t I I"% t 
Q6xlO -5 Q8xlO -5 1.0x10 -5 1.2x10 -5 14x10 -5 

E-l(V'/cmj 

Fig. 8. The full line on this figure shows ~, vs I /E for the 
fitted ionization coefficients of the Chynoweth expression. 
The dashed lines indicate the boundaries for the variation 
of the model parameters, in order to have a residual of less 

than 8%. 

line that also is shown on Fig. 6. All these lines which 
can be derived out o f  the relationship found between 
the two parameters in Fig. 7 can all be accepted as 
correct if an uncertainty of  8% is taken. They all go 
through one point (~1, E~ ). This point depends on the 
measured data set and of  course on the test structure. 
The effect of  this uncertainty region for the residual 
on the variation of  the ionization coefficients can be 
understood as follows: because the ionization model 
is integrated over the whole electrical field distri- 
bution to obtain the multiplication factor, it can be 
intuitively understood that other coefficients which 
give a higher (lower) generation rate at high fields and 
a lower (higher) generation rate at lower fields than 
the curve obtained with the best fitted coefficients, 
give almost the same error residual for a given test 
s t ruc ture .  

To reduce this region of  uncertainty, measured 
data should be collected over a large number of  
different test structures as was done by Van Over- 
straeten and De Man[8]. As an illustration, we keep 
the parameter ~,~'- fixed to their value at 7 × 105 and 
fit the parameter b, for the different temperatures. 
The results are summarized in Table 2. As can be 
observed, the fitting error is still very reasonable and 
the obtained values for b,, now increase monotonic-  
ally with temperature. Also the extracted value for b,, 
around room temperature (40°C) compares well with 
the value found by Van Overstraeten and De Man[8]. 

Table 2. The same extraction procedure as explained for 
Table 1 but the parameter  %; was kept fixed at 

7 × 105 and b~ was fitted 

Temp Residual 
( C )  :~/ ho (%)  

10 7 x 105 1.23 × 106 3.0 
40 7 x l0 s 1.258 x 106 3.0 
70 7 x 105 1.282 x 106 3,3 

I00 7 x 105 1.305 x 106 4.3 
130 7 x 105 1.323 x 104 3.5 
160 7 x | 0  s 1337 x 10 ~ 4.3 

The fitting residual is still low and extracted values for 
b. increases monotonical ly with temperature.  
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To see whether the relationship between ¢t ~ and b 
also holds for another test structure and for higher 
electrical fields, a diode profile is simulated and the 
multiplication data are generated with the coefficients 
given in Ref. [8]. We find an uncertainty relation 
between ~t and I/E totally similar to the one given in 
Fig. 8, proving that our considerations about the 
relationship between ~t ~ and b are general. This 
explains the rather large discrepancy between the 
experimental ct vs I /E  results of  several authors, as 
shown in Figs 2 and 3. In contrast with Van Over- 
straeten and De Man,  most authors measured their 
ionization rates on a very limited number of  diodes 
and using one device structure. Within a reasonable 
uncertainty of  the measurements, the ~t vs E relation 
can be rotated around a certain point (~tj,E~) as 
shown in Fig. 8. Taking this consideration into 
account, most experimental results can be made to 
agree rather well. 

The question arises whether it would be possible to 
predict the characteristics of  the residual function 
around the minimum mathematically. This can in- 
deed be done by approximating this function by its 
first three Taylor terms as explained in Appendix A, 
i.e. the region around the opt imum point is approxi- 
mated by an ellipsoid. The direction and the lengths 
of  the axes of  this ellipsoid give a good idea for the 
sensitivity and correlation of  the different parameters 
for small perturbations of  the fitting residual. If  we 
apply this theory to the bipolar transistor measure- 
ments at room temperature, the results given in 
Table 3 are obtained for a residual perturbation A of 
1%. This table shows e.g. that the parameter ct, ~ may 
be varied relatively by 0.3% in order to increase the 
overall residual with A = 1%. The sensitivity of  the 
parameter b, is even higher since it can only vary by 
0.05% to yield a A of 1% on the residual. 

The factor p in Table 3 is an indication of  the 
correlation between the two parameters; a strong 
correlation exists when I P [ is close to 1. To have an 
idea about  the real behaviour of  the residual function, 
the function was calculated for our bipolar multi- 
plication measurements and visualized as a function 
of  the two parameters. This three-dimensional plot is 

shown in Fig. 9 for a small parameter interval. It 
illustrates clearly that there exists a "val ley" where 
the residual is low instead of  only one correct 
parameterset. It can be proven that the appearance of  
a pronounced minimum (rather than a slowly varying 
valley) is more likely if  the range of  experimental data 
is increased. 

Taking a reasonable measurement error into 
account and performing a sensitivity analysis of  the 
extracted parameters as explained in this section, we 
find that most experimental results can be made to 
agree rather well and that the accuracy of  the par- 
ameters can be increased by enlarging the experimen- 
tal conditions for which they are extracted (more 
structures, larger electrical field range). The latter is 
the reason for which the parameters of  Van Over- 
straeten and De Man are probably the most accurate 
ones. 

6. IMPLEMENTATION OF AN AVALANCHE MODEL IN 
A DEVICE SIMULATOR 

Since most device simulators use local generation 
models, we will discuss in this section the implemen- 
tation of  such a model in the equations of  the 
simulator. Using a device simulator with an incor- 
porated avalanche model causes the C P U  time to 
increase drastically. Small changes of  the potential 
over the grid points during the iteration loop can 
cause a relatively large change in the number of  
generated carriers because of  the strong dependence 
of  the generation term on the electrical field. 

It can even happen that the simulated test structure 
breaks down during an intermediate iteration step 
causing the program to diverge. This can be over- 
come by simulating the test structure first without the 

Sensitivity analysis 
@ 

,% 

Table 3. Allowed parameter variation for a region of uncertainty of 
1% on the multiplication data set of the bipolar transistor at 40°C 

~n ~n 
(new) (Van Overstraeten-De Man, 1970) 

~t~ 3.318 x 10 ~ 
b, 1.174 × ] 0  6 

1.54% 
A I% 
A~t~ 922 

Ab, 528 

p 0.6 

7.030 x l05 
1.231 x l06 

Remark the strong sensitivity for both parameters especially for b,. 

lO s 

') 

~,q,,~,l~,,q~.~l,,~l,~,~l,,~q,,,,~3.34 10 s 
1.172 106 bn(Y/cm) 1.176 106 

Fig. 9. Calculated residual plane for the parameters ~ and 
b, for the multiplication data set of the bipolar transistor at 
40°C. The maximum value for the residual is clipped at 0. l 
(or 10%). It is clear that the optimum parameter set is not 

a point but is rather a narrow valley. 
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Vc 
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Fig. 10. Definition of the simulated bipolar structure with 
our 2-D device simulator PRISM. The collector base junc- 
tion consists of a lowly doped region where the electrical 
field is constant over W = 1 pm width. The hole and elec- 
tron currents can be calculated at different values of VBv. 

The recombination term is taken as zero. 

ava lanche  term. Then  these in termedia te  results can 
be used as a s tar t ing point  for the s imulat ion with the 
ava lanche  generat ion term included. 

Ano the r  source of  error  is the discret izat ion of  
the structure.  If  the discret izat ion mesh is coarse, 
the results can be e r roneous  even when the 
p rogram converges.  This is clearly i l lustrated with 
the s imulat ion of  a simple N P N  bipolar  t rans is tor  
as shown in Fig. 10. The problem is essentially 
one-d imens ional  so the compute r  s imulat ion can 
easily be compared  with exact analytical  calculations.  
The l # m  wide collector region conta ins  a lightly- 
doped N region where the electrical field is constant .  
For  the s imulat ion,  the recombina t ion  term is ex- 
cluded, al lowing us to calculate exactly bo th  the 
current  injected by the emit ter  and  the base hole 
current  as a funct ion of  applied base-col lec tor  
voltage. The s imulated results and the analytical  
calculat ions are compared  in Fig. 1 I. When  the 
high-field collector region is divided into ten mesh 
points  in the direct ion of  the current ,  the s imulated 
current  vs base--collector voltage agrees very well 

8 o  

• -~ 60 One mesh-p 

~ 40 

2O 

Cotcutotecl 
0 I t I I 

329000 331000 333000 335000 337000 
E ( V/cm ) 

Fig. 11. The simulated multiplication factors on the struc- 
ture defined in Fig. 10 as a function of electrical field over 
the base-collector junction by discretizing this region re- 
spectively with one meshpoint and with ten meshpoints in 
the direction of the current. The computed results are 

compared with analytically calculated values. 

E 

E 

Fig. 12. A piece of a finite difference mesh around the node 
i. A cell which contains all near neighbour points can be 
constructed around the node. For each sub-triangle of the 
cell, a different current and electrical field can be deter- 

mined. 

with the analytically calculated values. If this same 
collector region is discretized with only one mesh- 
point ,  the mult ipl icat ion deviates f rom the analytical 
solution and the devia t ion becomes larger as the 
electrical field increases. The conclusion is tha t  even 
when there is a region with a very low doping level 
where the voltage drop  is linear, a fine grid is required 
to correctly simulate the current  increase due to 
ava lanche  generat ion.  

A practical  app roach  is to derive a me thod  to 
implement  a local generat ion model  in a way which 
is a lmost  grid independent .  To illustrate the problem,  
the way the generat ion term is used in most  device 
s imulators  is studied. The current  cont inui ty  eqn (3) 
can be discretized using the divergence theorem,  and 
referring to the 2-D finite e lement  mesh of Fig. 12, in 
the following way for node i: 

2 J , , , p 4 ,  = Z a""~ "J~ i neighb .... "" p T (24) 

with A~.~. k the area and  G the generat ion rate over the 
whole mesh triangle. The sum must  be taken over all 
ne ighbour  n o d e s j  of  node i. The currents  are defined 
on the lines between the nodes with d,, / the length of  
the bisectors of  the different node lines. A r o u n d  each 
node,  a cell is created which conta ins  all points  
nearest  to tha t  node. Tha t  is the reason why only one 
third of  the area of  all ne ighbour ing  mesh-tr iangles 
must  be taken into account  in the generat ion term of  
the per t inent  node. The left side of  this equat ion  is 
solved s imultaneously with all o ther  equat ions  in 
an internal  coupled loop of  the device simulator.  
The r igh t -hand  side (generat ion term) must  be re- 
calculated between every iteration. It is this calcu- 
lation which int roduces  the sensitivity to the chosen 
mesh. This term is implemented in most  2-D device 
s imulators  by 

~,,p(Ej)lJo, pl 
G,,.p ~ (25) 

q 

The advantage  of this formula  is its simplicity, but the 
d rawback  is tha t  the result is only correct  for very 
small-sized triangles. This difficulty can be overcome 
by taking the direct ion of  the current  J and the shape 
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*Axrn/2 

Fig. 13. The different variables used to determine the 
generation rate over a triangle obtained from integration 
between the boundaries d~ and d 2 which depend on the 

direction of the current. 

of  the triangle into account in calculating the gener- 
ation term. Also the effect of  "secondary"  electrons 
and holes which can produce other pairs within the 
triangle must be included. 

The mesh triangle can be divided into different 
sub-triangles by constructing a nearest region for 
every node as pictured in Fig. 12. When the electrical 
field and the current direction are assumed constant 
over such a sub-triangle (as indicated on Fig. 12 by 
the coordinates [1, 2, 3]), the exact generation rate in 
the direction of  the current can be calculated analyti- 
cally as a function of  distance. This distance varies 
linearly perpendicular to the current direction and by 
integrating between the boundaries dl and dE as 
visualized in Fig. 13, the exact generation rate over 
the triangle can be found. For  a more detailed 
explanation of  this calculation, we refer to Ref. [92]. 
The formula obtained is given below. It should be 
compared with expression (25). 

G. = log e . _  ~ p e x p [ ( e . -  ep)AXM]] 1 

<xpAXM 

x .  ( 2lJ . I  "~ (26) 
\ AXMq J' 

with AXM the maximum distance over the triangle in 
the direction of  the current. This result shows that the 
generation rate depends only on the area of  the 
triangle and on AXM, which on its turn depends on 
the direction of  the current and on the shape of  the 
triangle. In this way the generation rates of  the 
different sub-triangles in which node i is embedded 
(see Fig. 12) can be summed to give the total gener- 
ation term for node i for the incoming electron and 
hole current. 

To investigate the impact of  this new implemen- 
tation method, we calculate the generation term for 
an incoming current of  unit value on a right-angle 
triangle shape as a function of  the current direction 
over the triangle. Figure 14 shows the plot of  this 
generation rate as a function of  the current angle. 
Due to symmetry considerations, one can easily 

2.5 x 10-4 
r Right-angLe trion0to 
L Elec - 3.3 x10 5 

1.5 x 10  . 4  

1.0 x 10 ~ I I 
0 50 100 150 200 

~ ( ° )  

Fig. 14. The calculated generation rate for a right-angle 
triangle as a function of the current angle. The peak 
generation rate occurs when the current is parallel to the 

hypotenuse of the triangle. 

observe that the generation rate at 0 ° for the current 
is the same as for 90 ° . It is also important  to remark 
that the generation rate gives a peak at 135 ° for the 
current direction when the current path is parallel to 
the hypotenuse of  the triangle where the maximum 
AX is found for the whole triangle resulting in a 
maximum of  generation. It is easy to see that 
the generation term can differ appreciably depending 
on the current direction which was not taken into 
account with the old generation model. 

7. CONCLUSIONS 

After defining the terms multiplication factor and 
avalanche generation rate, different multiplication 
and avalanche generation models have been dis- 
cussed. Most  authors use the Chynoweth expression 
to fit their multiplication data. When comparing the 
different experimental parameter sets, an important  
spread is observed. We have presented new electron 
multiplication measurements on a bipolar transistor 
at relatively low electrical fields and at different 
temperatures for injection by electrons. The data are 
in agreement with those of  Van Overstraeten and De 
Man at higher electrical fields and those of  Slotboom 
et aL at intermediate electrical fields. It is shown that 
an interdependence between the two parameters ~t ~ 
and b of  the Chynoweth expression exists for a given 
data set. This can be translated into a region of  
uncertainty for the obtained results. These consider- 
ations can explain the discrepancy of  the experimen- 
tal results among different authors. Most  authors use 
a limited number of  measurements such that within 
a reasonable uncertainty, their relation of  log(~t) vs 
1/E can be rotated around a point (cq,E~). The 
coefficients of  Van Overstraeten and De Man can be 
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considered accurate because they are based on a 
large n u m b e r  of  measurements  on different diodes 
giving ~ values in different ranges of  the electrical 
field. 

For  very high electrical fields, the Chynoweth  
expression is not  adequate  to describe the ava lanche  
generat ion.  Baraff  developed a theory valid in the 
different field regions. Also the T h o r n b e r  model 
combines  the Shockley and  Wolff  model into one 
expression, making  it valid over a wide range of  
electrical fields but  good pa ramete r  values are not  yet 
available. Recently the lucky electron model  has been 
extended and  made  more  suitable for use in a non-  
local model.  For  s imulat ing M O S F E T  transistors,  a 
local generat ion model canno t  always be used be- 
cause of  the low voltage drop  and  s t rong electrical 
field gradients  in the ava lanche  region. Genera l  non-  
local ionizat ion models  are however  difficult to imple- 
ment  in a device s imula tor  because the "h i s to ry"  of  
the particle has  to be taken into account.  

Implement ing  a local ava lanche  generat ion model  
in a device s imula tor  is a delicate task because of  the 
s t rong dependence  of  the carr ier  generat ion as a 
funct ion of  electrical field. This results in a slow 
convergence of  the a lgor i thm and  as a consequence in 
a large a m o u n t  of  C P U  time. The existing implemen-  
ta t ion  me thods  of  a local generat ion model  in a 
device s imula tor  often give results which depend on 
the choosen  discret izat ion mesh size. In this paper,  a 
me thod  is proposed with which we calculate exactly 
the generat ion rate over one mesh-tr iangle  of  a 2-D 
finite element mesh and  by which the s imulat ion 
results become much more  insensitive to the chosen 
grid size. 
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A P P E N D I X  

Sensitivity Calculation on Extracted Parameter Values 

In general, data fitting and parameter extraction are 
carried out mathematically by minimizing a specified 
objective function 4" (0). For any proposed analytical multi- 
plication model, the objective function can be specified as 
follows, 

4" = ~. (Si(O) - M , y  l (27) 
,=,\ ~ ] N 

with Mi the measured multiplication factor, N the number 
of data points and Sj(O) the calculated multiplication factor 
for a given model parameter vector 0. The extraction 
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Fig. A1. This simple picture illustrates the shape of the 
residual plane around the optimal parameter value together 

with a region of uncertainty A. 
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Fig. A2. Visualization of the contour plots showing the 
region of uncertainty for the two parameters ~ ~ and b,. This 
region is assumed to be an ellipsoid which has the dimension 

of the number of parameters. 

program calculates a best fit parameter vector O* but due to 
the experimental uncertainties, there is no reason to prefer 
O* above any other value of 0 for which 

14"(0)  - 4 ' ( 0 " ) 1  ~ E (28)  

where ~ is an allowed fitting error caused by experimental 
uncertainties. These uncertainties can have different origins. 
A first error source can come from noise on the measure- 
ments. It can also arise from the fact that the model itself 
is not perfect in describing the given physical phenomena or 
that the test structure is not correctly characterized. All 
these error sources create an uncertainty interval for the 
different parameters. 

One way of calculating this region of uncertainty is by 
approximating the E indifference region by an ellipsoid. 
Therefore, the problem of parameter uncertainty is now 
converted into the problem of the determination of the 
length and orientation of the ellipsoidal axes. The residual 
function is expanded in a Taylor series keeping only the first 
three terms: 

4" (0) = 4" (0") + J ' r 60  + ½60XH*60, (29) 

with 0 the parameterset, 60 = ( 0 -  0") while J* and H* 
are the Jacobian (first derivatives with respect to the par- 
ameters) and the Hessian matrix (second derivatives with 
respect to the parameters) evaluated in the minimum 0 ' .  
This is clearly illustrated in Fig. A1 which shows the error 
function for one parameter and in Fig. A2 showing the 
contour plots for two parameters. Because the Taylor 
expansion is evaluated in the minimum of the residual plane, 
the Jacobian matrix will be zero. The Hessian matrix is 
defined as 

=F 024" 1 
H,,j Loo,oo? j. ( 3 0 )  
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What  we are looking for is how much we can vary a 
parameter for a given increase (or uncertainty) in residual. 
For this purpose we use the definition of  the covariance 
matrix 

V ~  2~H* i (31) 

with ~ the allowed uncertainty interval on the residual. 
This interval can be estimated by using the matrix V 

defined above 

A0, = ,j" V, ... (32) 

and also the coupling or correlation between two different 
parameters can be expressed as 

V,.j 
P,,~- . (33) 

/ V ,  I / ,  
\ :  , . 

For a max imum value of 1 for I Pl ,  the correlation 
between the parameters 0, and 0~ is very strong. A value 
for IPl around 0 shows practically no correlation. More 
detailed information about this subject can found in 
Ref. [93]. 


