You may use for reference only the inside front and back covers of the textbook.

A square loop of wire lies on a table, a distance s from a very long straight wire, which carries a current I, as shown in below.

a. Find the flux of \vec{B} through the loop.

b. If someone now pulls the loop directly away from the wire, at speed v, what emf is generated? In what direction does the current flow?

c. What if the loop is pulled to the right at speed v, instead of away?

Faraday’s law: $\nabla \times \vec{E} = -\frac{d\vec{B}}{dt}$ or $\oint_C \vec{E} \cdot d\ell = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{a}$