These scripts are associated with the following publication: “Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog Using Machine Learning Techniques”, Saz Parkinson, P. M. (HKU/LSR, SCIPP), Xu, H. (HKU), Yu, P. L. H. (HKU), Salvetti, D. (INAF-Milan), Marelli, M. (INAF-Milan), and Falcone, A. D. (Penn State), The Astrophysical Journal, 2016, in press (http://arxiv.org/abs/1602.00385)
NB: You are welcome to use these scripts for your own purposes, but if you do so, we kindly ask that you cite the above publication.
load(".RData")
library(RWeka)
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
Model <- LogitBoost(pulsarness ~., data = FGL3_Pulsars_train)
summary(Model)
##
## === Summary ===
##
## Correctly Classified Instances 97 97.9798 %
## Incorrectly Classified Instances 2 2.0202 %
## Kappa statistic 0.9595
## Mean absolute error 0.0782
## Root mean squared error 0.1471
## Relative absolute error 15.686 %
## Root relative squared error 29.4519 %
## Coverage of cases (0.95 level) 100 %
## Mean rel. region size (0.95 level) 66.1616 %
## Total Number of Instances 99
##
## === Confusion Matrix ===
##
## a b <-- classified as
## 46 1 | a = MSP
## 1 51 | b = YNG
predictions_FGL3_Pulsars_train <- predict(Model,
newdata = FGL3_Pulsars_train, type = "probability")[, 2]
predictions_FGL3_Pulsars_test <- predict(Model,
newdata = FGL3_Pulsars_test, type = "probability")[, 2]
Best_threshold_train <- ROC_threshold_plots_tables(FGL3_Pulsars_train$pulsarness,
predictions_FGL3_Pulsars_train,
FGL3_Pulsars_test$pulsarness,
predictions_FGL3_Pulsars_test,
cat1 = "YNG", cat2 = "MSP")
## real_category
## Predict_class_train MSP YNG
## MSP 46 0
## YNG 1 52
## real_category
## Predict_class_test MSP YNG
## MSP 16 2
## YNG 2 23
FGL3_results$BLR_PSR_P <- round(predict(Model,
newdata = FGL3_tidy, type = "probability")[, 2],
digits = 3)
FGL3_results$BLR_PSR_Pred <- ifelse(FGL3_results$BLR_PSR_P > Best_threshold_train[1],
c("YNG"), c("MSP"))
FGL3_results$BLR_PSR_Pred[(FGL3_results$LR_Pred=="AGN")&(FGL3_results$RF_Pred=="AGN")]=""
Environ <- ls()
Environ <- Environ[Environ != "FGL3_tidy"
& Environ != "FGL3_results"
& Environ != "FGL3_test"
& Environ != "FGL3_train"
& Environ != "predictions_FGL3_train_CV"
& Environ != "Block_index"
& Environ != "FGL3_train_CV"
& Environ != "ROC_threshold_plots_tables"
& Environ != "FGL3_Pulsars_train"
& Environ != "FGL3_Pulsars_test"]
rm(list = Environ)
save.image()