Santa Cruz, February 10, 2009

Midterm Exam

Solve the following problems (each problem is worth the same number of points)

1. Test the following infinite series for convergence:

$$
\sum_{n=1}^{\infty}(-1)^{n-1} n^{-1 / n}
$$

2. Show that the following infinite series is convergent:

$$
\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n^{2}}
$$

3. Find the interval of convergence of the following power series:

$$
\sum_{n=0}^{\infty} \frac{n}{n+1}\left(\frac{x}{3}\right)^{n}, \quad x \in \mathbb{R}
$$

4. Determine the disk of convergence of the following complex series:

$$
\sum_{n=0}^{\infty}(1+n i)(z+i)^{n}, \quad x \in \mathbb{C}
$$

5. Find the real and the imaginary part of

$$
i e^{i|1+2 i|}
$$

6. Determine the angles in the triangle formed by the three vertexes $P_{1}=(2,2,2), P_{2}=(3,1,1)$, and $P_{3}=(3,3,3)$.
7. A car drives in a horizontal circular track of radius R (to its center of mass). Find the speed at which the car will overturn, if h is the height of its center of mass and d is the distance between its left and right wheels.
8. Test the set of linear homogeneous equations

$$
x+3 y+3 z=0, \quad x-y+z=0, \quad 2 x+y+3 z=0
$$

to see if it possesses a nontrivial solution and find one.
9. Given the pair of equations

$$
x+2 y=3, \quad 2 x+4 y=6
$$

(a) show that the determinant of the coefficients vanishes;
(b) show that the numerator determinants also vanish;
(c) find at least two solutions
10. The matrix equation $A^{2}=0$ does not imply $A=0$. Show that the most general 2×2 matrix whose square is zero may be written as

$$
\left(\begin{array}{cc}
a b & b^{2} \\
-a^{2} & -a b
\end{array}\right)
$$

where a and b are real or complex numbers.

