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The Alternating Series Test

An alternating series is defined to be a series of the form:

S =

∞
∑

n=0

(−1)nan , (1)

where all the an > 0. The alternating series test is a set of conditions that, if
satisfied, imply that the series is convergent. Here is the general form of the
theorem:

Theorem: If the series
∑

∞

n=0
bn respects the following three properties:

1. The signs of the bn alternate for all n > n0, where n0 is some fixed positive
number;

2. The bn are monotonically decreasing in magnitude for all n ≥ n0. That is,
|bn+1| ≤ |bn| for all n > n0;

3. lim
n→∞

bn = 0;

then the series is convergent. If property 3 does not hold, then the series diverges.
If property 3 is respected but property 1 and/or property 2 do not hold, then the
alternating series test is inconclusive.

Note that property 1 corresponds to the statement that after the first n0 terms,
the remaining series is an alternating series. Hence, in this note I will assume that
property 1 holds.∗

It is easy to exhibit a divergent series that satisfies properties 1 and 3 but does
not satisfy property 2. Consider the alternating series:

S = 1 −
1

1 · 2
+

1

2
−

1

2 · 3
+

1

3
−

1

3 · 4
+

1

4
−

1

4 · 5
+ · · · .

This is an alternating series that satisfies condition 3 but violates condition 2.
However, note that:

1 −
1

1 · 2
=

1

2
,

1

2
−

1

2 · 3
=

1

3
,

1

3
−

1

3 · 4
=

1

4
, etc.

∗If properties 2 and 3 hold but property 1 does not hold, then the test is inconclusive. For

example, the infinite harmonic series diverges whereas the sum of the inverse squares of the

positive integers converges. Both these series respect properties 2 and 3 but not property 1.
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If we denote the sum of the first N terms of the series S by SN , it then follows
that:

S2N =
1

2
+

1

3
+

1

4
+ · · · +

1

N + 1
, S2N+1 = S2N +

1

N + 1
.

Since the infinite harmonic series diverges, it follows that

lim
N→∞

S2N = lim
N→∞

S2N+1 = ∞ ,

and we conclude that the series S diverges.

By the way, it is easy to give an example of a convergent alternating series
that respects property 3 but violates property 2. Here is one such example:

T =
∞

∑

k=0

ak = 1 −
1

2
+

1

32
−

1

23
+

1

34
−

1

25
+ · · ·+

1

32k
−

1

22k+1
+ · · · .

Indeed, this series violates property 2, since

∣

∣

∣

∣

a2k+1

a2k

∣

∣

∣

∣

=
32k

22k+1
=

1

2

(

9

4

)k

> 1 .

More generally, the condition |an+1| < |an| fails to hold for all even n. Never-
theless, one can easily show that this series is convergent by the comparison test.
Noting that

|an| ≤
1

2n
,

it follows that T converges faster than the geometric series
∑

∞

n=0
1/2n. In fact it

is easy to see that the series T is the difference of two separate geometric series.
I challenge you to prove that the sum of this series is T = 11/24.

Sketch of proof of the theorem: For simplicity, we assume that n0 = 0. Let
SN =

∑

N

n=0
(−1)nan be the sum of the first N + 1 terms of the alternating series.

Then, it is easy to check that S1 > S3 > S5 > · · · and S2 < S4 < S6 < · · · .
Consequently, S2n < S < S2n+1 for all n. It then follows that for any positive
error bound ǫ, there exists an N such that |Sn −Sm| < ǫ for all m, n ≥ N . Hence,
the alternating sum converges to S = limn→∞ S2n = limn→∞ S2n+1.

We note an important corollary to the theorem that follows from this proof:

Corollary: If the alternating sum converges to S, then the error in the approxi-
mation of S by the sum of its first n + 1 terms is bounded by the absolute value
of the next term in the series. That is,

|S − Sn| < an+1 , for n ≥ n0 ,

where an+1 > 0 in the notation of eq. (1).
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