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THE INSTANTANEOUS MOTION OF A RIGID BODY 

DUNHAM JACKSON, University of Minnesota 

1. Combination of instantaneous rigid motions. The  assertion tha t  a rigid 
body is rotating about the x-axis with a certain angular velocity, and rotating 
a t  the same time with another angular velocity about the'y-axis, puts a strain 
on the imagination of a student meeting this form of statement for the first time. 
He is relieved to  find tha t  the statement is not one tha t  needs t o  be interpreted 
literally, being merely a somewhat irresponsible substitute for a clear formula- 
tion in mathematical terms. What  is meant is merely tha t  if the body is regarded 
as a continuous distribution of matter, the vector velocity of each of its points is 
the geometric resultant of the velocity which would be associated with that point 
by the first rotation and the one which i t  would have in the second rotation. 

The analysis of the most general instantaneous motion of a rigid body can be 
carried through in terms of ideas of corresponding simplicity. (The phrase "in- 
stantaneous motion" is understood for the purposes of this paper t o  be concerned 
throughout with the velocities of the points considered, not with their accelera- 
tions, which would present a more complex problem.) The  notions involved are 
of course essentially vectorial. In  particular, the theory offers notable concrete 
or semi-concrete exemplification of the significance of the distributive law for 
vector fn~ l t i~ l i ca t i on .  The main features of the theory are presented below from 
this point of view.* The presentation lays no claim to  novelty; its purpose is 
merely to  give one possible arrangement of the details in order for consecutive 
reading. 

* For a formulation in quite different language see for example R. S. Ball, The Theory of 
Screws, Dublin, 1876, pp. xix-xxiv; for further comparison see W. F. Osgood, Mechanics, New 
York, 1937, Chapter V. 
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The problem is that  of characterizing the motion itself, without reference 
to the forces which produce or control it. The characterization is independent 
also of the size and shape of the body considered. If its motion or that  of any 
three-dimensional portion of i t  is specified, the velocity which a particle a t  any 
point of space would possess if rigidly attached to it is determined. I t  is to  be 
supposed for the purposes of the present study that  each point of space has a 
definite vector velocity assigned to it ,  in a manner consistent with the condition 
of rigidity presently to  be laid down. Any such distribution of velocities, or 
velocity field, will be called for brevity a rigid motion. For similar purposes of 
abbreviation any set of velocities which there is occasion to consider will be 
called a motion, whether subjected explicitly t o  the hypothesis of rigidity or not. 

I t  will be seen that  in a sense to  be carefully defined the most general rigid 
motion i s  either a translation or a rotation or the resultant of a translation and a 
rotation. 

The condition of rigidity is that  for every pair of points PI,P2, the vector velocity 
of PIand the vector velocity of P2 have equal componen{s along the line PIP2.This 
expresses for instantaneous motion the property that  the distance between any 
two points of the body remains invariable. As between the two opposite direc- 
tions along the line, it is naturally to be understood that  the equal components 
agree in direction as well as in magnitude. 

The discussion here, as already remarked, is concerned exclusively with the 
motion itself, not with the conditions by which i t  is produced. I t  is of no con- 
sequence whether any material body to  which the conclusions may be applied is 
capable of deformation or not, provided that  the velocities which its particles 
actually possess under specified circumstances are such that  the condition of 
rigidity is fulfilled. 

If any two "motions," i.e. sets of velocities defined for the points of space, 
are denoted by M' and M", their resultant, represented symbolically by M1+ MI1, 
is the motion in which the velocity of each point is the resultant or vector sum 
of the velocities assigned to that  point by M' and M" separately. I t  is an im- 
mediate consequence of the definitions that  the resultant of a n y  two rigid mo-
tions i s  a rigid motion, since for each pair of points PI,Pz the components of the 
resultant velocities along PIP2 are obtained by algebraic addition of components 
which are separately equal for the two points. 

2. Simple rigid motions: translation and rotation. A translation is a motion 
in which all points have equal vector velocities; that  is to say, in less technical 
but colloquially* more descriptive language, the velocities of all points are equal 
and parallel. I t  follows from the definition that  a translation is a rigid motion. 

Another fundamental type of motion, called a rotation, can be described as 
follows : 

* In an  endeavor to  minimize technicality of expression, the word velocity will be used inter- 
changeably for the vector velocity and for its magnitude, when no misunderstanding seems possible. 
If the reader desires to  have the distinction appear in the record he can of course accomplish this 
with brevity by using the word speed on occasion for the magnitude of the vector velocity. 
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a) There is a straight line, called the axis of the rotation, all of whose 
points have zero velocity. 

b) The velocity of any point not on the axis is perpendicular t o  the plane 
containing the point and the axis. 

c) All points a t  equal distances from the axis have equal velocities (the 
word "equal" being used again as an abbreviation for "equal in magnitude"). 

d) Points a t  different distances from the axis have velocities proportional 
t o  those distances. 

e) All velocities correspond to the same "sense" or direction of turning 
about the axis. 

I t  will be seen presently that  the content of all this verbal description can 
be condensed into a simple vector formula. 

A rotation is "obviously" a rigid motion, in the sense that  intuition recog- 
nizes it as a kind of motion possible for a rigid body. I t  is another matter t o  show 
formally-that i t  satisfies the definition of a rigid motion in terms of .the velocities 
of an arbitrary pair of points. To give such a proof by the methods of ele- 
mentary geometry would be a somewhat substantial exercise. I t  can be done in a 
few lines by means of vector algebra, for the reason that  the geometric relations 
involved are precisely those which vector algebra recognizes as  fundamental. 
Another reason for stressing this proof is that  i t  appears in some way to form 
the backbone of the entire theory; simple as  it is, all the other proofs to be given 
subsequently are so much simpler as to be scarcely more than a succession of 
"remarks." 

By the specifications describing a rotation above, the ratio of the velocity 
of an arbitrary point P to its distance from the axis is the same for all points 
of space. This ratio is the angular velocity of the rotation. If the same unit of 
length is used for measuring velocity and for measuring distance, the angular 
velocity is measured in.radians per unit of time. All the essential characteristics 
identifying a particular rotation are conveniently represented by a vector o 
lying in the axis, with magnitude numerically equal to the angular velocity just 
defined, in the adopted scale of measurement, and pointing in the direction in 
which the rotation would carry a right-handed screw. This w is called the vector 
velocity of rotation. Like a vector representing a force in the dynamics of a rigid 
body, it is to  be thought of as lying in a definite line, but may be laid off from 
any point of that  line as initial point. 

Let 0 be an arbitrary point of the axis, and let p be the vector from 0 to  an 
arbi,trary point P of space. By a check of magnitude and direction i t  is seen a t  
once that  the velocity of P i s  represented by the vector product oXp. For any speci- 
fied w this product defines a set of vectors throughout space having the charac- 
teristics of a rotation. 

A rotation being given with w as its vector representation, and a fixed point 
of reference 0 on its axis, let pl and pz be the vectors from 0 to  a pair of arbitrary 
points PI,Pz anywhere in space. The vector velocities of PI and P2 are w Xpl 
and w Xp2. Their components in the direction from P1 toward Pz, if the distance 
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PlPz is denoted by D,  are D-lw Xpl. (p2-pl) and D-lw Xp2. (pz-pl), and D times 
the difference between these components is 

(0 X PZ - w X Pl). (PZ - PI) = w X (PZ - PI). (PZ - PI) = 0, 

because of the distributive law for the scalar product, the distributive law for 
the vector product, and the fact that  w X (p2 -pl) is perpendicular to p2 -pl (or, as  
an alternative formulation for the last step, the fact that  a scalar triple product 
is zero if two of its factors are alike). The vanishing of the difference means that  
the condition of rigidity is fulfilled. 

As a trivial special case, the assignment of zero velocities t o  all points will 
be regarded alternatively as  defining a translation of zero magnitude or a rota- 
tion of zero magnitude about an arbitrary axis, or will be referred to simply as a 
zero motion. 

3. Analysis of general rigid motion. A description of the most general rigid 
motion is now obtained through the following sequence of observations. 

I. A rigid motion in which three non-collinear poivts have zero velocities i s  a 
zero motion. Let 01,02,O3 be three such points. Let P be any point outside their 

By the condition of rigidity P can not have any velocity component along 
any of the lines OlP, OzP, 03P.That  is to say, all three lines must be perpendicu- 
lar to the velocity of P, i f  any .  Since they do not lie in one plane, this is im- 
possible, and the words "if any" indicate a condition contrary to fact; the 
velocity of P must be zero. As for points in the plane 0 1 0 2 0 3 ,  let Q be any such 
point, and let 0 4  be a point outside the plane. By the preceding proof the veloc- 
ity of 0 4  is zero, and repetition of the argument with 0 4  in place of one of the 
three points originally given shows that  Q has zero velocity. 

11. A rigid motion in which two distinct points have zero velocities i s  a rotation 
about the l ine of these points a s  axis .  Let 01, O2 be the given points. Let Po be a 
point outside their line. If Pohas zero velocity, all points have zero velocity by 
the preceding paragraph, and the motion can be regarded as a zero rotation. 
If POhas a velocity, this velocity can have no component along OlPo or OzPo, 
by the condition of rigidity, and so must be perpendicular t o  both lines and to 
the plane of the three points. Let v o  be the magnitude of the velocity of Po, and 
r the perpendicular distance of Pofrom the line 0102. Let M denote the given 
rigid motion; of the two opposite rotations about 0 1 0 2  with angular velocity 
vo/r ,  let R denote the one that  gives to  Pothe velocity which i t  possesses in 
M, and -R the other. Then the  resultant of M and -R, for brevity M -  R,  is a 
rigid motion in which 01, 0 2 ,  and Pohave zero velocities, and so all points have 
zero velocities, by reference to the preceding paragraph once more. That  is to 
say, M a s  a set of velocities for the points of space is identical with R. 

111. A rigid motion in which a point 0 has zero velocity i s  a rotation about a n  
axis  through 0.The assertion that  if there is a point a t  rest there must be a whole 
line of points a t  rest recalls the similarly striking fact in solid geometry that  if 
two planes have a point in common they must have a whole line in common. 
I t  will be seen that  one fact is a consequence of the other. In the formulation 
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of the proof, trivial specializations which have the effect merely of bringing back 
the conditions of the preceding paragraphs will not be explicitly enumerated. 

Let PI be a point distinct from 0, and 41its vector velocity. Since 41 must 
be perpendicular to OP1, by the condition of rigidity, the plane through Pi 
perpendicular to 41 contains 0. Let pi denote this plane. Let Pi be any point of 
91outside the line OP1. The velocity of Pi must be perpendicular t o  OPi  and to 
PiPi, and so perpendicular t o  $1, since P1has no component of velocity along 
PIP{ and 0 has no velocity a t  all. A selected reference point in pl outside OP1 
may then be used to extend the conclusion to  points of this line, in analogy 
with the final step in the proof of I. All points of pl have their velocities, if any, 
perpendicular t o  pi. 

Let Pz be a point outside pl, 4Zits velocity, and pz the plane through Pz 
perpendicular to 4 ~ .By reasoning similar t o  that  just presented, $2 passes 
through 0,and the velocities of all points of p2are perpendicular to $2. 

Since pi and pz have the point 0 in common, they intersect in a line. If 01 
is another point of the line of intersection its velocity, if any, must be per- 
pendicular t o  both planes. As this is impossible, O1 has zero velocity, and refer- 
ence to I1 completes the proof. 

IV. If 0 is an arbitrarily chosen point, the most general rigid motion is re- 
sultant of a rotation about an axis through 0 and a suitable translation. ( I t  is 
understood naturally that  either the rotation or the translation may in par- 
ticular be zero.) Let M be the given rigid motion, let 4 be the vector velocity 
of 0, and let T be the translation in which all points have this vector velocity, 
while -T is the opposite translation, with velocity -4. Then M - T, inter- 
preted as  M + ( - T), is a rigid motion in which 0 has no velocity, and so by I11 
is a rotation about an axis through 0. If this rotation is denoted by R ,  M is the 
resultant of R and T. 

I t  is t o  be noted that  only a single point of the axis, not the whole axis, is 
arbitrary. 

V. The resultant of a rotation and a translation perpendicular to the axis of the 
rotation i s  a rotation. of equal angular velocity about a parallel axis. Let R denote 
the rotation, with w as  the vector representation of its angular velocity, and T 
the translation, with velocity 4;  the hypothesis requires that  o .+ =0. 

TOdemonstrate formally a fact which is obvious to  geometric intuition, 
namely tha t  there is a line of points to which R assigns the velocity -4, let 
$=w X4/w2, where w2 denotes the square of the magnitude of w, let 0 be an 
arbitrary point of the axis of R, and let 0' be the corresponding point such tha t  
the vector 00' is $. Then the velocity ci,X$ which R gives to 0' is in fact -4 ,  
as may be seen either by application of the rule for evaluating a vector triple 
product or by elementary interpretation of the successive operations of simple 
vector multiplication. 

As 0 describes the axis of R,  the point 0' describes a parallel line, and the 
rigid motion R+ T, giving zero velocity to all points of this line, is a rotation 
R' about it. The  equality of the angular velocities is recognized by comparing 
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the vector velocities of a pair of corresponding points 0' and 0 in the respective 
rotations, the line joining them being perpendicular to both axes. 

VI. The  most general rigid motion i s  resultant of a rotation and a translation 
parallel to the axis of the rotation.* On the basis of this analysis the motion is 
called a screw motion. Let 0 be an arbitrary point, and let the given motion M 
be expressed by IV as a rotation R about an axis through 0 plus a translation T. 
Let T be resolved into component translations To and TI , parallel and per- 
pendicular to the axis of R. By V, R and TIcan be combined into a rotation Ro 
about a parallel axis, and M is then the sum of Ro and To. 

With the conclusions IV and VI the theory attains a certain stage of com- 
pleteness. Some additional facts are nevertheless deserving of emphasis. 

Of these perhaps the most striking relates t o  the combination of rotations 
about intersecting axes. I t  follows a t  once from I11 tha t  the resultant of two 
such rotations is a r o t a t i ~ n  about an axis through the point of intersection, since 
this point has zero velocity in the resultant motion. More specifically, let 0 
be the intersection, let wl and w2 be the vectors representing the given rotations, 
let P be an arbitrary point of space, and let p be the vector OP. The resultant 
of the velocities given to  P by the two rotations separately is 

which is the same as the velocity corresponding to  a single rotation represented 
by the vector wl+w2. Instantaneous rotations about intersecting axes can be added 
vectorially, as  a n  immediate consequence of the distributive law for vector multi- 
plication. 

This fact is the basis for the resolution of an instantaneous rotation into 
component rotations about a set of coordinate axes. 

In the combination of a rotation with a non-vanishing translation parallel 
t o  its axis, the velocity given to  any point by the rotation, having no com- 
ponent parallel t o  the axis, can not cancel the velocity due to  the translation; 
there is no point with zero velocity, and the resultant motion is not equivalent 
t o  any single rotation alone. 

Suppose a given rigid motion is resolved in any way into a rotation R1 and a 
translation TI, and again into a rotation Rzand a translation Tz. Then one may 
write the equations. 

(Such manipulation does not involve the setting up of any new type of algebra; 
i t  is, merely a symbolism for representing comprehensively the corresponding 
elementary combinations of the vector velocities for the various points of space.) 
Let the translation T I -  T2 be resolved into components T', T" perpendicular 
and parallel t o  the axis of R1. By V, the resultant of the rotation Ri and the 

* Discovery of this theorem is ascribed to G. Mozzi, 1763; see Encyklopadie der mathe- 
matischen Wissenschaften, vol. 4: 1, article IV 2, H. E. Timerding, Geometrische Grundlegung 
der Mechanik eines starren Korpers, pp. 125-189; p. 143. 
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translation T' is a rotation R' with equal angular velocity about a parallel axis. 
ln the equation 

R2 = R' + T" 

i t  follows from the preceding paragraph that  T" must vanish. T h e  rotations 
R1 and R2 have equal angular velocities about parallel axes;  the translations TI 
and T2 have equal components in the common direction of these axes. T o  restate a 
part of this conclusion in different words, a given rigid motion has a vectorial 
angular velocity w which i s  determined in magnitude and direction by the rigid 
motion itself,  and  i s  independent of a n y  choice of a particular point of reference a s  
origin. 

If in particular i t  is supposed that  neither TI nor T2 has any transverse com- 
ponent, T' vanishes, R2 is the same as Rl, and T2 is the same as TI; the resolution 
given by VI i s  uniquely determined. 

4. Supplementary notes. By way of additional comment, attention may be 
directed to certain facts with regard to translations which were not needed in 
the main body of the discussion. The obvious fact that  'a translation satisfies 
the condition of rigidity was noted a t  an early stage. I t  is almost as  easy to see 
that  a rigid motion in which all the velocities are parallel is necessarily a trans- 
lation. For if PI,P 2  are any two points such that  the line joining them is not 
perpendicular t o  the common direction of the velocities, equality of the com- 
ponents along PlP2implies that  the total velocities of PIand P2 are equal; from 
an equation vl cos 0 = v 2  cos 0 i t  follows that  v l  =v2, if cos OZO. If the line PlP2 

is perpendicular t o  the direction of translation, the velocities of P1 and P2 are 
equal to that  of any third point P3outside the plane through P1 and P2 per-
pendicular to that  direction, and so again equal t o  each other. 

Less obvious perhaps a t  the outset, but easily recognized when the general 
theorems have been established, is the proposition that  if the velocities in a 
rigid motion are all equal they must be parallel, and the motion is a translation 
once more. For if the motion is resultant of a translation and a rotation in which 
the latter is not zero, the magnitudes of the velocities are certainly not all 
equal. 

In summary, of the properties of rigidity, parallelism, and equality of mag- 
nitude, any two imply the third. 

The reader may be interested to show as an "exercise" that  the most general 
rigid motion i s  either a rotation or (in an infinite variety of ways) resultant of two -

rotations about non-intersecting axes. 
A more extensive exercise, which is of importance in itself and will serve to  

throw Auch light in retrospect on the theory that  has been developed, is t o  carry 
through a corresponding discussion in two dimensions, that  is t o  say, with con- 
sideration only of points in one plane, and with the assumption that  all veloci- 
ties lie in that  plane. A noteworthy difference between two dimensions and 
three is found in connection with the theorem numbered VI: Every plane rigid 
motion i s  either a translation or a rotation. 


