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1 Simple Harmonic Oscillator, Hamilton-Jacobi Approach

The difficulty of checking a solution goes like the reciprocal of finding the solution. Let me compute up
front the total derivative of S(q, ,t),
gcos(wt) — dg + mwacos(wt) PP mw? 2qa cos(wt) — (¢ + a?)

d5 = mew sin(wt) sin(wt) 2 sin(wt)?

dt

As with any generating function, the differential action
pdq — Hdt = Bda — Kdt +dS
must be preserved. The dq term tells me, implicitly, how to transform the coordinate «,

_ 98 qucos(wt) -«
P= dq sin(wt)

the do terms tells me how to transform the momentum 3,

S acos(wt) — q

5:—%=—mww (1.1)

and the dt term tells me how to transform the Hamiltonian K,

oS oS
K = — = sl
" (q’ P= 5 ) ot
1 W 2 w? 5 mw? 2qacos(wt) — (g2 + a?)
-~ 2m sin(wt) o 1 2 sin(wt)?

When | expand the square, all terms cancel out, leaving the new Hamiltonian identically zero. So
S(q, a, t) indeed solves the Hamilton-Jacobi equation. Moreover, both o and 3 and conserved, so | can
invert the definition of 5 (1.1) to find the physical coordinate

q(t) = acos(wt) + % sin(wt)

which | recognize as the general solution to the simple harmonic oscillator. In particular, o = ¢(0) is the
initial position and 8 = mq(0) is the initial momentum.

2 Damped Harmonic Oscillator, Canonical Approach

Part (a) The Hamiltonian Newton's Second Law directly yields the equation of motion,

—V'(q) — 2m~y¢ = mg (2.1)




Now | take the Lagrangian

-2
. mq
L(g,4,t) = > [2 - V(Q)}
and compute the conjugate momentum
oL
p= g =¢'md (2.2)
q
its rate of change
. docL . .
p= at g = " (2ymg + mq)
and the generalized force
oL
En = —e""V'(q)
Clearly the resulting Euler-Lagrange equation
. V'(q .
q= —Tfl) —2vq

is equivalent to Newton's Second Law (2.1), so the proposed Lagrangian is valid. Next, to derive the
Hamiltonian, | solve equation (2.2) for the velocity ¢ = (p/m)e 2", and take the Legendre transform,
-2

H=pi— L= [mj +V<q>}

2
_ p
H(q,p,t) = e > om +e"V(q)

Part (b) A Constant of Motion Given Fy(q, P,t) = e qP, | compute its total derivative,
dFy ="' Pdg+ e qdP + yelqP dt
and require the differential action
pdg — Hdt = PAQ — Kdt + dF,

to be preserved. The caveat is F5 has a dP rather than a d@, so | must subtract the total differen-
tial d(PQ) = PdQ + QdP from the right-hand side—that amounts to an integration by parts. Then |
collect differentials,

(p—e"P)dg+ (Q —e"q)dP + (K —H — ve"'qP)dt = 0

and set each term to zero because ¢, P, t are independent variables. The dg term tells me the new
momentum P = e 7 p, the dP terms tells me the new coordinate Q = ¢ ¢, and the dt term tells me
the new Hamiltonian,

2
K =M+ qP =e " g—m +e7"'V(q) +7e"'qP

P2
K(Q,Pt) = 5—+e7'V(g = Qe ™) +1QP




In the case of a harmonic oscillator potential

2.2 2
V(g = "5 — Vig=Qe) ="M
the transformed Hamiltonian becomes independent of time,
P2 mw?
K(Q,P)=—+—Q P 2.3
(QP) = 5+ -0 +1Q (2.3

Whenever the Hamiltonian has no explicit time dependence, it is a constant of motion.

Part (c) The Solution The Hamiltonian produces two canonical equations of motion,

. 0K P
Q:aip:E+VQ (2.4)
. 0K

Taken together with the statement that K is conserved, one out of three equations is redundant. | am
tempted to solve (2.4) and (2.5) since they are first-order linear equations with straightforward initial
conditions,

o (2.6)

Q(0) = ¢(0)
P(0) = p(0) = mqg(0) = muy

but | am told to use the constant of motion (2.3), so here it goes. | solve for P in terms of @) and K,
using the quadratic formula,

P=—mQ imJ 2w

Two things to notice: first, | don't know yet which sign to pick. Second, in order for P to be real, the
quantity under the square root must be non-negative. An underdamped oscillator with v < w is therefore

subject to the constraint
2K
m(w? — )

The maximum allowed @ corresponds to the oscillator’'s amplitude, which decays exponentially. Now |
substitute this expression for P into the equation of motion for @ (2.4), making it separable,

Q

B Q2

==1

Integrating the right-hand side over (0,¢) just gives me +¢. The system evolves forward in time, so it's
plausible that I'll have to choose the positive sign. Meanwhile, integrating the left-hand side from Q(0)

to Q(t) calls for the change of variable \/w? —42Q = /2K /m sin ¢.

/Q“) dQ L /W) 6(t) — ¢(0)
- 2 2 d¢ - 2 2
Q(0) \/%—(wQ—'y?)QZ Vw? —y —

$(0) w



So | obtain ¢(t) = ¢(0) + y/w? — 72 t, which looks reassuringly like the phase of oscillation. Changing
back to Q,

Qt) = 27_72) sin ¢ (1)

= LQ |:SiIl (]5(0) COS( w2 — 72 t) + cos ¢(0) Sin( w2 — ,YQ t)]

m(w? —~?)
The initial phase and energy are of course determined by the initial conditions (2.6).

P(0)2 mw2 _m
K = ”+ 000 + QU0 ™ (08 + wa3) + ymaouy

sin ¢(0 \/ _7 \/ _W
cos ¢(0) = £4/1 —sin? ¢ \/1—M

Those ugly square roots all cancel out, leaving me in peace.

Q(t) = xpcos(v/w 2¢) \U/Omsin( w2 —~2t)
—9?

Finally, the physical coordinate ¢ is related to the canonical coordinate Q by ¢ = Qe™?,

q(t) = e " [xo cos(vw 2t) :;)lai; sin(v/w? — 2 t)

I've decided on the plus sign because it gives the correct initial condition for ¢. I've also checked that
this solution indeed satisfies the equation of motion given by Newton's Second Law, § = —w?q — 274. |
would much prefer to have solved that equation from the get-go.

3 Anharmonic Oscillator, Action-Angle Approach

The potential is periodic with infinitely tall barriers, which a classical particle can’t tunnel through, so

I'll only consider the piece 0 < x < wzg. | can immediately write down the Hamiltonian,
’ a

Hw.p) = 2m  sin(z/x0)?

It is completely integrable since there's once one spatial dimension. The conservation of energy H = E
allows me to write the momentum as a function of position,

pla) = # (B~ e

where the sign depends on whether the particle is moving right (+) or left (—). The turning points are
where momentum approaches zero,

xr1 = xparcsin/a/E Ly = xo(m — arcsin \/a/E)




There's always two turning points for £ > a. E = a puts the particle at rest in equilibrium; E < a is
not allowed. The action variable is defined as the contour integral

T 1
J:y{ pdz :/ (+p) dx+/ (—p) dx
H=F T o

:2wa¢%{E—mm%w4

| will not attempt to evaluate this integral. If | did, | would then solve for E as a function of .J, and
calculate the orbital frequency v = dE/dJ. But I'm more interested in the period of oscillation,

rol_ 4 _ ﬁm/” do
v dE VNV E ), f{_ _aBE

sin(z/xz0)?

This integral is quite hard to solve. By trial and error | found that the substitution
V1—a/E sin¢ = — cos(x/xg) (3.1)
V1 —a/E cos¢pdp = sin(z/xp) dz/z

maps the interval of integration = : (z1,22) — ¢ : (—m/2,7/2), and makes the integrand trivial:

SN O 5

Interestingly the period of oscillation depends on energy. More energetic, and thus faster, particles have
shorter period. | may also calculate the angular frequency,

2 2F

| came up with two ways to check this result. First, one-dimensional motion can always be reduced
to quadrature. The canonical equation for the coordinate =z,

de  OH p
dt  9dp m
can be converted to a directly integrable equation for time,

dt m

dz  p(x)

If | integrate from the left turning point to the right, | get half the period, so the full period is twice that

integral,
x2 x2
T:2/ mdx:\/Qm/ \/
xr1 |p(ﬂf)’ E 1 1— (l/E

sin(z/x0)2

Same integral, same answer. In fact, | may go one step further and solve the motion completely. Just
relax the upper limit of integration and make the same substitution as above,

” 1/2E/_7r/2x0d¢—x0“2E¢+7T/2

5




and surprisingly enough, ¢ turns out to be the phase of oscillation,

2F
p=t|—5 —7/2=wt—T7/2
ma3

| then invoke the substitution (3.1) again to find the displacement,

x(t) = xg arccos [m cos(wt)}

under the initial condition that the particle starts at rest with total energy E.
The second check is to consider small oscillations dx near the equilibrium = = 7xg/2. If | Taylor-
expand the potential V'(z) about the equilibrium,

V(%%%—é) V(W;°)+V’(W§O)6 + V”(mo)d + O(623)

The first term is the constant a. The second term is zero. The third term is a harmonic oscillator
potential with “force constant” V" (mzo/2) = 2a/x3. So the frequency of small oscillations is

V//
w =1 [ — [ ——
mxo

which is the result (3.3) in the limit £ — a.

4 Canonical Transformation

The invariance of Poisson brackets is a necessary and sufficient condition for a canonical transformation.
It is also easy to check; taking Q1 = ¢%, Q2 = ¢1 + qo,
1. [Q1,Q1] = [Q2, Q2] = [P1, P1] = [P, P2] = 0 is automatically satisfied.

2. [@1,Q2] = 0 because there's no p dependence;

3. [Qlapl]—quapl —1_>8P1 _ 1

Op1 2q1
4. [Q, P =202 =0— G2 =0
5. [QP)=90+9 =050 =L
6. [Qo, Po) = G2+ 92 =1—%—1-8L—1

From the partial derivatives | can glimpse the general form

p1 — D2
P=""2 0 A,
| 20 fla1, q2)

Py =ps+9(q1,92)

where f, g are undetermined functions of ¢1, g2. The last Poisson bracket,
OP, 0P, OPLOP, OP 0P, OP 0P

Oq1 Op1 Op1 O~ Oqa2 Opa  Op2 Oq
1 99  of 1 99 _

_|_
2101 dq2  2q10q2

[P1, Po] =



is the only constraint on f and g. Now consider the Hamiltonian

b1 — p2
2q1

2
H(q1,q2,p1,p2) = < > +po+ (q1 + q2)?

| think f =0, g = (q1 + ¢2)? is a good choice, and it satisfies the last Poisson bracket condition as well.
So my canonical transformation is

Q1 =q
Q2=q1+q
— 4.1
P = b1 — p2 ( )
2q1
Py =po+ (q1 + q)°

and my new Hamiltonian is

H(Py, Py) = P2 + P,

Well, Q1 and Qo are ignorable, so P; and P, are conserved. The other two canonical equations are
trivially solved,

. oH
O1=5p =20 {th) = 2Pt + Qi (0)
—

s OH Qa(t) =t + Q2(0)
Q2_8P2_ 2 2

To find the initial conditions for the new variables, | evaluate the transformations (4.1) at ¢ = 0, which
is the same as adding a subscript 0. Then | iteratively solve for the original variables,

P10 — P20
Q1=\/Q1=\/2 t+ a3
q10

Q2=Q2—Q1=Q1o+(bo+t—\/

1

P10 — P20
2q10
p2 = P> — (1 + q2)*> = pao + (q10 + q20)* — (q10 + q20 + t)?
P10 — P20 /P10 — P20
qio \/ q10

t+ g3

p1 =2P1q1 +p2 =

t+q3y + p2o + (q10 + 920)* — (q10 + goo + 1)?

I've double-checked that the initial conditions are self-consistent. | have no idea what physical system
this describes.



