
Classical Mechanics Homework 2
John Tamanas

1 Problem 1

1.a

We begin with our favorite equation, F = ma, with a = −GN mdust
r2

, where

GN is Newton’s gravitational constant, mdust is the mass of the dust acting

on the system, and r is the distance from the center of mass (which we will

assume is the center of the sun). Because we are concerned about the

gravitational force due to a uniform distribution of dust (so a uniform

distribution of mass) we may use the shell theorem to conclude that we

need only concern ourselves with the mass enclosed in a sphere of radius r.

The density of the dust is ρ, so mdust = ρ4
3πr

3.

Therefore,

F ′ = −mGN
ρ4
3πr

3

r2
= −mGN

4

3
ρπr = −mkr

with k = 4
3ρπGN .

1.b

We showed in class that the Lagrangian of the system gives us this

equation of motion

mr̈ − L2

mr3
=
∂V

∂r

In this problem, we have two attractive potentials, one due to the sun, and

one due to the dust, so

V = −GN
M

r
+
kr2

2

Because we are assuming a circular orbit, r̈ = ṙ = 0, r = r0. Thus,

− L2

mr30
= −GN

M

r20
− kr0

Which we can rewrite as
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GNMmr0 + kr40 − L2 = 0

1.c

We can think of this as a Kepler problem with a single dust particle, of

mass µ, coming in with a velocity V . We now consider the orbit equation

1

r
=
µ2MGN
L2

(
1 +

√
1 +

2EL2

µ3M2G2
N

cos(θ − θ′)

)
We are interested in the case where the minimum distance between the

dust particle and the sun is r = R, so we set cos(θ = θ′) = 1. The angular

momentum of the dust particle is L = µV s, where s is the impact

parameter of the dust and the center of the sun. At infinity, the energy of

the particle is E = 1
2µV

2.

1

R
=
MGN
V 2s2

(
1 +

√
1 +

V 4s2

M2G2
N

)
We solve for s to find

s2 = R2 +
2MRGN

V 2

We are interested in how the mass changes with time; dM
dt = ρdVoldt . The

volume, Vol, is of a cylinder with an effective radius s. We plug in our

previous results into this to find:

dM

dt
= ρπR

(
RV +

2MGN
V

)

1.d

We go back to our best friend, F = ṗ = ṀV +MV̇. We will assume V is

constant, so that V̇ = 0. Thus,

F = ṀV = πρR(RV 2 + 2MGN )V̂
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2 Problem 2

In the laboratory frame, consider an incident particle with mass m1, that

then scatters off of a stationary particle of mass m2, at an angle ϑ. By

conservation of energy,

1

2
m1v

2
0 −

1

2
m1v

2
1 +Q =

1

2
m2v

2
2

where Q is the energy lost due to the inelasticity of the scatter, and v2 is

the velocity of m2 after scattering. We can impose momentum

conservation to get two more relations.

m1v1 sin(ϑ) = m2v2 sin(α)

m1v0 = m1v1 cos(ϑ) +m2v2sin(α)

where α is the angle of deflection of m2 after scattering. We now square

both momentum equations and add them together to get rid of the

dependence on α.

m2
1v

2
1 sin2(ϑ) +m2

1v
2
1 cos2(ϑ) +m1v

2
0 − 2m2

1v0v1 cos(ϑ) = m2
2v

2
2

We now solve for everything in terms of cos(ϑ).

cos(ϑ) =
−m2

2v
2
2 +m2

1v
2
0 +m2

1v
2
1

2m2
1v1v1

Let E0 be the energy of m1 before the scatter, and E1 be the energy of m1

after the scatter. We can now plug in v0 =
√

2E0
m1

, v1 =
√

2E1
m1

, and

v22 = 2(E0−E1+Q)
m2

.

cos(ϑ) =
m1(E0 + E1)−m2(E0 + E1 +Q)

2m1

√
(E0E1)

which gives us the desired result

cos(ϑ) =
m2 +m1

2m1

√
E1

E0
− m2 −m1

2m1

√
E0

E1
− m2Q

2m1

√
E0E1
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3 Problem 3

We will begin by solving for the impact parameter, s. In class we derived,

Θ(s) = π − 2

∫ um

0

sdu√
1− ( k

2E + s2)u2

(after plugging in V (u) = 1
2ku

2). This evaluates to

Θ(s) = π − 2s√
k
2E + s2

sin−1


√

k
2E + s2

rm


Using conservation of angular momentum, we set rm = v0

vm
s. We plug this

into our relation for conservation of energy to find

mv20
2

=
mv2m

2
+

k

2r2m
→ E = E

s2

r2m
+

k

2r2m

Solving for rm, we get rm =
√
s2 + k

2E . Putting this result into our

expression for Θ(s) we find

Θ(s) = π

1− s√
k
2E + s2


Let x = Θ/π = 1− s√

k
2E

+s2
. We now solve for s to find

s =

√
k(1− x)2

2Ex(2− x)

The cross section σ(x) = s
sinπx

∣∣∣ dsdx ∣∣∣, so we take the derivative of s with

respect to x ∣∣∣∣ dsdx
∣∣∣∣ =

∣∣∣∣1s k(x− 1)

2E(x− 2)2x2

∣∣∣∣
We finally recover the desired result

σ(Θ)dΘ =
k(1− x)dx

2Ex2(2− x)2 sinπx
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