Homework Set #5.

Due Date - Oral Presentation: Tuesday November 2, 2010 **Due Date - Written Solutions**: Tuesday November 9, 2010

Bilinears Consider bilinear products of a Dirac field $\psi(x)$ and its "conjugate" $\overline{\psi}(x)$. All possible combinations are given by:

$$S = \overline{\psi}\psi, \quad V^{\mu} = \overline{\psi}\gamma^{\mu}\psi, \quad T^{\mu\nu} = \overline{\psi}\gamma^{[\mu}\gamma^{\nu]}\psi, \quad , A^{\mu} = \overline{\psi}\gamma^{5}\gamma^{\mu}\psi \quad \text{and} \quad P = \overline{\psi}i\gamma^{5}\psi$$

In the expressions above, $\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$, and $\gamma^{[\mu}\gamma^{\nu]} \equiv \frac{1}{2}\left(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\nu}\right)$

- 1. Show that all bilinears are Hermitian (*Hint: first, show that* $(\overline{\psi}\Gamma\psi)^{\dagger} = \overline{\psi}\overline{\Gamma}\psi$, where $\overline{\Gamma} = \gamma^{0}\Gamma^{\dagger}\gamma^{0}$ is the Dirac conjugate of Γ).
- 2. Show that under continuous Lorentz symmetries, the S and P transform as scalars, the V^{μ} and the A^{μ} as vectors, and the $T^{\mu\nu}$ as an antisymmetric tensor. (*Hint: remember what you showed in HW#3...*)
- 3. Find the transformation rules of the bilinears under parity and show that while S is a true scalar and V is a true (i.e. polar) vecotr, P is a pseudo-scalar and A is an axial vector.