Final Exam

Due Date: Friday December 10, 2010, 5PM in the Instructor's mailbox

The $K_{l 3}^{0}$ decay

The decay process

$$
K^{0} \rightarrow \pi^{-} l^{+} \nu_{l}
$$

is well described by the Fermi interaction:

$$
H=\frac{G}{\sqrt{2}} J_{\mu}^{h} \bar{\psi}_{\nu_{l}} \gamma^{\mu}\left(1-\gamma^{5}\right) \psi_{l}
$$

where the hadronic current J_{μ}^{h} has a matrix element

$$
\langle\pi| J_{\mu}^{h}|K\rangle=f_{1} P_{\mu}+f_{2} q_{\mu}
$$

with $f_{1,2}$ the form factors, which are functions of q^{2}, and $P_{\mu}=\left(p_{K}\right)_{\mu}+\left(p_{\pi}\right)_{\mu}$ and $q_{\mu}=\left(p_{K}\right)_{\mu}-\left(p_{\pi}\right)_{\mu}$.
(i) Calculate the matrix element squared for the process, summed over final state polarizations (take the neutrino as massless, but keep m_{l})
(ii) Assuming the form factors are constant, and knowing that the 3-body phase space can be cast in this case as

$$
\mathrm{d} \Phi^{(3)}=\frac{1}{32 \pi^{3}} \mathrm{~d} E_{l} \mathrm{~d} E_{\pi},
$$

calculate the differential decay width

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} E_{l} \mathrm{~d} E_{\pi}}
$$

[Bonus points: explicitly calculate $\mathrm{d} \Phi^{(3)}$]
(iii) Neglect terms proportional to the charged lepton mass and integrate in the E_{l} and E_{π} variables over the appropriate kinematic regions to calculate the $K_{l 3}^{0}$ decay width. [Suggestion: find the range for E_{π}, then the range for E_{l} as a function of E_{π} and $\left.\left|\vec{p}_{\pi}\right|\right]$
(iv) Determine the numerical value of $\left|f_{1}\right|^{2}$ knowing that experimentally $\Gamma_{K_{l 3}^{0}}^{-1} \simeq 1.3 \times 10^{-7} \mathrm{~s}$.

