Physics 221A Solutions to HW #1

Problem 1

(i) **Allowed**

(ii) **Not allowed**: cannot conserve energy + momentum

(iii) **Not allowed**: violates lepton number conserv.

(iv) **Not allowed**: \(m(m) < m(p) + m(\nu^-) \) so it violates energy conservation

(v) **Not allowed**: violates charge conservation

Problem 2

\(K^- : I = \frac{1}{2}, I_2 = -\frac{1}{2} \); \(P : I = \frac{1}{2}, I_2 = +\frac{1}{2} \)

\(K^- p > - \sqrt{2} \left| 1,0 > - \sqrt{2} \left| 0,0 > \right. \)

\(\pi^{\pm, 0} \) and \(\Sigma^{\pm, 0} : I = 1, I_2 = \pm 1, 0 \)

\(|\pi^+ \Sigma^- > = \sqrt{\frac{1}{6}} |2,0 > + \sqrt{\frac{1}{2}} |1,0 > + \sqrt{\frac{1}{3}} |0,0 > \)

\(|\pi^0 \Sigma^0 > = \sqrt{\frac{1}{3}} |2,0 > + \sqrt{\frac{1}{2}} |0,0 > \)

\(|\pi^- \Sigma^+ > = \sqrt{\frac{1}{6}} |2,0 > - \sqrt{\frac{1}{2}} |1,0 > + \sqrt{\frac{1}{3}} |0,0 > \)

(1): \(\frac{1}{2} A_i - \sqrt{\frac{1}{6}} A_0 \)
(2): $\sqrt{\frac{1}{6}} A_0$

(3): $-\frac{1}{2} A_1 - \sqrt{\frac{5}{6}} A_0$

$$\Gamma_1: \Gamma_2: \Gamma_3 = \left| \frac{1}{2} A_1 - \frac{1}{\sqrt{6}} A_0 \right|^2 : \frac{1}{6} |H_0|^2 : \left| \frac{1}{2} A_1 + \frac{1}{\sqrt{6}} A_0 \right|^2$$

Problem 3

$$\pi^+\pi^- : \sqrt{\frac{1}{6}} |2,0> + \sqrt{\frac{1}{2}} |1,0> + \sqrt{\frac{1}{3}} |0,0>$$

From C-G Tables:

$$\pi^+\pi^- \rightarrow \pi^0 \pi^0$$

$$\sqrt{\frac{1}{6}} \left(\sqrt{\frac{3}{5}} |3,0> - \sqrt{\frac{2}{5}} |1,0> \right) +$$

$$+ \sqrt{\frac{1}{2}} \left(\sqrt{\frac{2}{3}} |2,0> - \sqrt{\frac{1}{3}} |0,0> \right) +$$

$$+ \sqrt{\frac{1}{3}} |1,0>$$

Therefore $I = 0, 1, 2, 3$

$$\pi^0 \pi^0 : \sqrt{\frac{2}{3}} |2,0> - \sqrt{\frac{1}{3}} |0,0>$$

$$\pi^0 \pi^0 \pi^0 : \sqrt{\frac{1}{3}} \left(\sqrt{\frac{2}{3}} |3,0> - \sqrt{\frac{1}{3}} |1,0> \right) - \sqrt{\frac{1}{3}} |1,0>$$

Therefore $I = 1, 3$
Problem 4

\[
(T^b, T^c)_{ae} = (T^b T^c - T^c T^b)_{ae} = T^b T^c_{de} - T^c T^b_{de} = ii f_\text{abd f dde} - ii f_\text{acd f dbe} = ii f_\text{bcd f ade} / \text{CONSTRUCTION}
\]

Hence: \(f_\text{bcd f ade} + f_\text{acd f dbe} + f_\text{abd f cde} = 0 \)

Now, considering Jacobi's identity:

\[
[X_a, [X_b, X_c]] + [X_c, [X_a, X_b]] + [X_b, [X_c, X_a]] = 0
\]

\[ii f_\text{bcd f ade X e} + ii f_\text{abd f cde X e} + ii f_\text{caod f bde e} = 0 \]

To hold \(\forall X^e \), it must be that

\[f_\text{bcd f ade} + f_\text{acd f dbe} + f_\text{abd f cde} = 0 \]

using antisym. of structure const. Q.E.D.
Problem 5

Since \(G(M_\pi) = (-1)^{M_\pi} \), \(G(p) = + \)

The possible isospin values are 0, 1, 2

Since \((\pi^0 \pi^0) = \sqrt{\frac{2}{3}} |2, 0\rangle - \sqrt{\frac{1}{3}} |0, 0\rangle \)

The strong decay \(p^0 \rightarrow \pi^0 \pi^0 \) is prohibited only if \(I = 1 \)

Since pions are bosons, angular momentum conservation implies that \(p \) is a boson

Its total wavefunction must thus be symmetric

The \(I = 1 \) isospin wavefunction is antisymmetric. Therefore, the spin wavefunction needs to be also antisymmetric. Since the spin of \(p \) is equal to the spatial wave function in the final state, and this needs to be antisymmetric, \(L = \text{odd} \), and the spin of \(p \) is integer and odd.

The parity of the final state is \(P_f = (-1)^L (P(p))^2 \)

\(= (-1)^{\text{odd}} = -1 \)

Hence, since parity is conserved in strong interactions, \(P(p) = -1 \).
Problem 6

(i) \(S = -3 \) IMPLIES 555, \(Q \neq 0 \# \) OK \(\Omega \)

(ii) \(C = 1 \) IMPLIES \(C \); \(Q = 2 \rightarrow \) MAKE \(\Sigma \)

(iii) \(C = 1 \)
\(S = -1 \)
IMPLIES \(CS \); \(Q = 1 \) IMPLIES \(MC \)

(iv) \(C = 1 \)
\(S = -2 \)
IMPLIES \(CSS \); \(Q = 0 \) OK \(\eta \)

(v) \(B = -1 \) and \(Q = 0 \) IMPLY \(\mu dB \) \(\lambda \)