PHYSICS 221A - HOMEWORK SET 4

Due in class Monday, November 29, 2004

Background: B. J. Bjorken, A Thousand TeV in the Center of Mass: Introduction to High Energy Storage Rings, FERMILAB-CONF-82/55-THY.

Problem 1

Calculate the ratio of cms energies for a 100 GeV positron beam colliding with a stationary electron target vs. an electron in a counter-circulating 100 GeV electron beam.

Problem 2

Consider the magnetic field of a quadrupole magnet which is focussing in \hat{x} for positive particles travelling in the $+\hat{z}$ direction, i.e.

$$
B_{y}=G x .
$$

Show that, for this same particle, the quadrupole is defocussing in \hat{y}.

Problem 3

Consider two cylindrical beams of radius $1 \mu m$ and uniform area density which pass through each other head-on at a rate of 120 Hz . Assuming each beam contains 5×10^{10} particles, calculate the luminosity of the collision in units of $\mathrm{cm}^{-2} / \mathrm{s}$, i.e., the numbers of expected collisions per second for a process with cross section $\sigma=1 \mathrm{~cm}^{2}$. If the accelerator is an electron-positron collider running at the peak of the Z^{0} cross section, calculate the corresponding rate of Z^{0} production, given a peak cross section of 45 nb . What would you get for the luminosity if one (and only one) of the beams was focussed to a cylinder with radius $0.5 \mu \mathrm{~m}$ at the collision point?

Problem 4

Consider a ring composed of an uninterupted thin-lens FODO lattice, i.e., an exact interger number of cells consisting of the elements focus-drift-defocus-drift, with the focussing and defocussing quads having the same focal length f. By symmetry, the β-function of the lattice must have the periodicity of the lattice, and so transport through exactly one cell of the lattice will leave you with the same value of β that you started with, but with an arbitrary phase advance μ. Given the thin-lens transport matrices derived in class, find the value of this phase advance as a function of the drift length l and the quadrupole focal length f. Find the resulting all-important condition on l and f for transverse stability.

Problem 5

Again exploiting the symmetry of the ring to restrict your calculation to the transport through a single cell, find the ratio of the maximum and minimum of the β function in the lattice as a function of l and f. (Hint: just solve for β at the two points where your intuition tells you it will be largest and smallest.) What is the ratio of the maximum to minimum beam size for a phase advance of 90° per cell - fairly typical for high-energy storage rings?

Problem 6

Consider a singly charged particle in a high energy beam of momentum p travelling at a small angle $y^{\prime}=d y / d z$ with respect to the z (beam) axis. Show that the angular kick $d y^{\prime}$ suffered by this particle after traversing a length dz in a magnetic field with x component B_{x} is

$$
d y^{\prime}=\frac{0.3 B_{x}}{p c} d z
$$

where B_{x} is in Tesla, $p c$ is in GeV , and $d z$ is in meters. Show that such a particle will undergo sinusoidal motion in the field of a long focussing quadrupole magnet. Find the period of this sinusoidal motion as a function of the quadrupole gradient G, where $B_{x}=G y$. Armed with this result, derive the transfer matrix $M\left(z_{0}+l, z_{0}\right)$ for a 'thick' quadrupole of lenth l. Show that this transfer matrix reduces to the appropriate 'thin-lens' form in the limit that $l \rightarrow 0$.

