Thermodynamics and Statistical Mechanics

1 General Definitions and Equations

- First Law of Thermodynamics: Heat Q is a form of energy, and energy is conserved.
$-d U=d Q-d W$
- Second Law of Thermodynamics: The entropy S of a system must increase.
$-\Delta S \geq 0$
- Third Law of Thermodynamics: For a system with a nondegenerate ground state $S \rightarrow 0$ as $T \rightarrow 0$.
- $\lim _{T \rightarrow 0} S=k_{B} \ln \Omega_{0}$, where Ω_{0} is the degeneracy of the ground state
- A system is equally likely to be in any of the quantum states accessible to it.
- Equipartition theorem: each "degree of freedom" of a particle contributes $\frac{1}{2} k_{B} T$ to its thermal average energy
- Any quadratic term in the energy counts as a "degree of freedom"
- E.g. monoatomic: 3 translational, 0 rotational, 0 vibrational $\rightarrow\langle E\rangle=\frac{3}{2} k T$
- E.g. diatomic: 3 translational, 2 rotational, 0 vibrational (2 at high T) \rightarrow $\langle E\rangle=\frac{5}{2} k T\left(\frac{7}{2} k T\right.$ at high $\left.T\right)$
- Binomial Distribution: $P(n, N-n)=\binom{N}{n} p^{n}(1-p)^{N-n}$
$-\binom{N}{n}=\frac{N!}{n!(N-n)!}$
- Normalization: $\sum_{n=0}^{N} P(n, N-n)=1$
- Mean: $\langle n\rangle=\sum_{n=0}^{N} n P(n, N-n)=N p$
- Variance: $\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=\sum_{n=0}^{N} n^{2} P(n, N-n)-(N p)^{2}=N p(1-p)$
- Gaussian Distribution: $P(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- Normalization: $\int_{-\infty}^{\infty} P(x) d x=1$
- Mean: $\langle x\rangle=\int_{-\infty}^{\infty} x P(x) d x=\mu$
- Variance $\left\langle(x-\mu)^{2}\right\rangle=\int_{-\infty}^{\infty}(x-\mu)^{2} P(x) d x=\sigma^{2}$
$-P(a<x<b)=\int_{a}^{b} P(x) d x$
- Heat capacity, $c: Q=C \Delta T, C=m c$, where c is the specific heat capacity
- Molar heat capacity, $C: Q=n C \Delta T$, where n is the number of moles
- Latent heat of fusion (Q to make melt): $Q=m L_{f}$
- Latent heat of vaporization (Q to vaporize): $Q=m L_{v}$
- Ideal Gas Law: $P V=n R T=N k_{B} T$
- For an ideal gas, $C_{p}=C_{V}+R, \quad$ where $C_{V}=\left(\frac{\partial Q}{\partial T}\right)_{V}, \quad C_{P}=\left(\frac{\partial Q}{\partial T}\right)_{P}$
- Adiomatic index: $\gamma=\frac{C_{P}}{C_{V}}$
$-\gamma=\frac{5}{3}$ for monoatomic gases, $\gamma=\frac{7}{5}$ for diatomic gases
- Stirling's Approximation: $\ln (n!) \approx n \ln (n)-n$, for $n \gg 1$

2 Energy equations

- Thermodynamic Identity: $d E=T d S-P d V+\mu d N$
- Helmholtz Free Energy: $A=E-T S \Rightarrow d A=-P d V-S d T+\mu d N$
- Enthalpy: $H=E+P V \rightarrow d H=T d S+\mu d N+V d P$
- Gibbs free energy: $G=A+P V=E+P V-T S \rightarrow d G=V d P-S d T+\mu d N$
- Maxwell relations: $\frac{\partial}{\partial x_{j}}\left(\frac{\partial \Phi}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\frac{\partial \Phi}{\partial x_{j}}\right)$

3 Thermodynamic Processes

- Reversible process: happens very slowly, $\Delta S=\int \frac{d Q}{T}$
- Irreversible process: happens very suddenly
- Work: $W=\int P d V$
- Isothermal: T held constant
$-d U=0 \rightarrow d Q=d W$
- Isochoric: V held constant
$-W=0 \rightarrow d U=d Q$
- Isobaric: P held constant
$-W=P \Delta V$
- Isoentropic: S held constant
- Adiabatic: $d Q=0$
$-d U=-d W$
- Also isoentropic if reversible
$-P V^{\gamma}=$ constant
- Heat engine thermal efficiency: $e=1+\frac{Q_{C}}{Q_{H}}$
- Refridgerator coefficient of performance: $k=\frac{\left|Q_{C}\right|}{\left|Q_{H}\right|-\left|Q_{C}\right|}$
- Carnot cycle thermal efficiency (ideal): $e=1-\frac{T_{C}}{T_{H}}$
- Carnor refridgerator coefficient of performance: $k=\frac{T_{C}}{T_{H}-T_{C}}$

4 Microcanonical Ensemble

- $S=k_{B} \ln \Omega, \Omega$ is number of microstates accessible

5 Canonical Ensemble

- Partition function: $Z=\sum_{s} e^{-\beta \varepsilon_{s}}$, where $\beta=\frac{1}{k_{B} T}$
- With degeneracies: $Z=\sum_{s} g_{s} e^{-\beta \varepsilon_{s}}$, where g_{s} is the degeneracy of the s state
- $P\left(\varepsilon_{s}\right)=\frac{e^{-\varepsilon_{s} / k_{B} T}}{Z}$
- $\langle\varepsilon\rangle=\frac{1}{Z} \sum_{s} \varepsilon_{s} e^{-\beta \varepsilon_{s}}=-\frac{d \ln Z}{d \beta}$
- $A=-k_{B} T \ln Z$
- $S=\frac{\partial}{\partial T}\left(k_{B} T \ln Z\right)=-\frac{\partial A}{\partial T}$
- For N indistinguishable particles, $Z_{N}=\frac{Z^{N}}{N!}$

6 Grand Canonical Ensemble

- Chemical potential $\mu=-\left.T \frac{\partial S}{\partial N}\right|_{E}$
- Grand partition fucntion: $\mathcal{Z}=\sum_{N=0}^{\infty} \sum_{s(N)} \exp \left(-\frac{\varepsilon_{s}(n)-\mu N}{k_{B} T}\right)$
- $P(N, \varepsilon)=\frac{1}{\mathcal{Z}} \exp \left(-\frac{\varepsilon_{s}(n)-\mu N}{k_{B} T}\right)$
- $\langle N\rangle=k_{B} T \frac{\partial \ln \mathcal{Z}}{\partial \mu}$

7 Blackbody Radiation

- Stephan Boltzmann Law: $\Phi=\sigma T^{4}$
- Φ is energy flux of star
- T is the temperature of the star
$-\sigma=5.67 \times 10^{-8} J^{-4} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ is Stephan-Boltzmann constant
- Planck radiation Law: $u_{\omega}=\frac{\hbar}{\pi^{2} c^{3}} \frac{\omega^{3}}{e^{-\beta \hbar \omega}-1}$
- u_{ω} is spectral density, energy per unit volume per unit frequency
- Wein's Law
$-\lambda_{\text {peak }}=\frac{2.9 \times 10^{-3} \mathrm{mK}}{T}$

8 Particle Distributions

- Maxwell-Boltzmann (for classical, distinguishable particles): $n(\varepsilon)=e^{-\beta(\varepsilon-\mu)}$
- Fermi-Dirac (for identical fermions): $n(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1}$
- As $T \rightarrow 0, n(\varepsilon) \rightarrow \begin{cases}1 & \text { if } \varepsilon<\mu(0) \\ 0 & \text { if } \varepsilon>\mu(0)\end{cases}$
- Fermi energy $E_{F}=\mu(0)$, all states filled below E_{F} no states filled above E_{F}
- Bose-Einstein (for identical bosons): $n(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}-1}$

