Thermodynamics and Statistical Mechanics

1 General Definitions and Equations

• First Law of Thermodynamics: Heat Q is a form of energy, and energy is conserved.

- dU = dQ - dW

• Second Law of Thermodynamics: The entropy S of a system must increase.

 $-\Delta S \ge 0$

• Third Law of Thermodynamics: For a system with a nondegenerate ground state $S \rightarrow 0$ as $T \rightarrow 0$.

 $-\lim_{T\to 0} S = k_B \ln \Omega_0$, where Ω_0 is the degeneracy of the ground state

- A system is equally likely to be in any of the quantum states accessible to it.
- Equipartition theorem: each "degree of freedom" of a particle contributes $\frac{1}{2}k_BT$ to its thermal average energy
 - Any quadratic term in the energy counts as a "degree of freedom"
 - E.g. monoatomic: 3 translational, 0 rotational, 0 vibrational $\rightarrow \langle E \rangle = \frac{3}{2}kT$
 - E.g. diatomic: 3 translational, 2 rotational, 0 vibrational (2 at high T) $\rightarrow \langle E \rangle = \frac{5}{2} kT \left(\frac{7}{2} kT \text{ at high T} \right)$

• Binomial Distribution: $P(n, N - n) = \binom{N}{n} p^n (1 - p)^{N - n}$

$$-\binom{N}{n} = \frac{N!}{n!(N-n)!}$$

- Normalization: $\sum_{n=0}^{N} P(n, N-n) = 1$
- Mean: $\langle n \rangle = \sum_{n=0}^{N} nP(n, N-n) = Np$
- Variance: $\langle n^2 \rangle - \langle n \rangle^2 = \sum_{n=0}^{N} n^2 P(n, N-n) - (Np)^2 = Np(1-p)$

- Gaussian Distribution: $P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$
 - Normalization: $\int_{-\infty}^{\infty} P(x) dx = 1$ - Mean: $\langle x \rangle = \int_{-\infty}^{\infty} x P(x) dx = \mu$ - Variance $\langle (x - \mu)^2 \rangle = \int_{-\infty}^{\infty} (x - \mu)^2 P(x) dx = \sigma^2$

$$- P(a < x < b) = \int_{a}^{b} P(x) dx$$

- Heat capacity, c: $Q = C\Delta T$, C = mc, where c is the specific heat capacity
- Molar heat capacity, $C: Q = nC\Delta T$, where n is the number of moles
- Latent heat of fusion (Q to make melt): $Q = mL_f$
- Latent heat of vaporization (Q to vaporize): $Q = mL_v$
- Ideal Gas Law: $PV = nRT = Nk_BT$
- For an ideal gas, $C_p = C_V + R$, where $C_V = \left(\frac{\partial Q}{\partial T}\right)_V$, $C_P = \left(\frac{\partial Q}{\partial T}\right)_P$

• Adiomatic index:
$$\gamma = \frac{C_P}{C_V}$$

$$-\gamma = \frac{5}{3}$$
 for monoatomic gases, $\gamma = \frac{7}{5}$ for diatomic gases

• Stirling's Approximation: $\ln(n!) \approx n \ln(n) - n$, for n >> 1

2 Energy equations

- Thermodynamic Identity: $dE = TdS PdV + \mu dN$
- Helmholtz Free Energy: $A = E TS \Rightarrow dA = -PdV SdT + \mu dN$
- Enthalpy: $H = E + PV \rightarrow dH = TdS + \mu dN + VdP$
- Gibbs free energy: $G = A + PV = E + PV TS \rightarrow dG = VdP SdT + \mu dN$

• Maxwell relations:
$$\frac{\partial}{\partial x_j} \left(\frac{\partial \Phi}{\partial x_i} \right) = \frac{\partial}{\partial x_i} \left(\frac{\partial \Phi}{\partial x_j} \right)$$

3 Thermodynamic Processes

- Reversible process: happens very slowly, $\Delta S = \int \frac{dQ}{T}$
- Irreversible process: happens very suddenly
- Work: $W = \int P dV$
- Isothermal: T held constant

$$- dU = 0 \rightarrow dQ = dW$$

• Isochoric: V held constant

$$-W = 0 \rightarrow dU = dQ$$

- Isobaric: P held constant
 - $-W = P\Delta V$
- Isoentropic: S held constant
- Adiabatic: dQ = 0
 - dU = -dW
 - Also isoentropic if reversible
 - $-PV^{\gamma} = constant$
- Heat engine thermal efficiency: $e = 1 + \frac{Q_C}{Q_H}$

• Refridgerator coefficient of performance:
$$k = \frac{|Q_C|}{|Q_H| - |Q_C|}$$

- Carnot cycle thermal efficiency (ideal): $e = 1 \frac{T_C}{T_H}$
- Carnor refridgerator coefficient of performance: $k = \frac{T_C}{T_H T_C}$

4 Microcanonical Ensemble

• $S = k_B \ln \Omega$, Ω is number of microstates accessible

5 Canonical Ensemble

- Partition function: $Z = \sum_{s} e^{-\beta \varepsilon_s}$, where $\beta = \frac{1}{k_B T}$
- With degeneracies: $Z = \sum_{s} g_s e^{-\beta \varepsilon_s}$, where g_s is the degeneracy of the s state

•
$$P(\varepsilon_s) = \frac{e^{-\varepsilon_s/k_BT}}{Z}$$

•
$$\langle \varepsilon \rangle = \frac{1}{Z} \sum_{s} \varepsilon_s e^{-\beta \varepsilon_s} = -\frac{d \ln Z}{d\beta}$$

•
$$A = -k_B T \ln Z$$

•
$$S = \frac{\partial}{\partial T} \left(k_B T \ln Z \right) = -\frac{\partial A}{\partial T}$$

• For N indistinguishable particles, $Z_N = \frac{Z^N}{N!}$

6 Grand Canonical Ensemble

• Chemical potential $\mu = -T \frac{\partial S}{\partial N} \Big|_E$

• Grand partition function:
$$\mathcal{Z} = \sum_{N=0}^{\infty} \sum_{s(N)} \exp\left(-\frac{\varepsilon_s(n) - \mu N}{k_B T}\right)$$

•
$$P(N,\varepsilon) = \frac{1}{\mathcal{Z}} \exp\left(-\frac{\varepsilon_s(n) - \mu N}{k_B T}\right)$$

•
$$\langle N \rangle = k_B T \frac{\partial \ln \mathcal{Z}}{\partial \mu}$$

7 Blackbody Radiation

- Stephan Boltzmann Law: $\Phi = \sigma T^4$
 - $-\Phi$ is energy flux of star
 - -T is the temperature of the star
 - $\sigma = 5.67 \times 10^{-8} J K^{-4} m^{-2} s^{-1}$ is Stephan-Boltzmann constant

• Planck radiation Law: $u_{\omega} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{-\beta\hbar\omega} - 1}$

 $-~u_{\omega}$ is spectral density, energy per unit volume per unit frequency

• Wein's Law

$$-\lambda_{peak} = \frac{2.9 \times 10^{-3} mK}{T}$$

8 Particle Distributions

- Maxwell-Boltzmann (for classical, distinguishable particles): $n(\varepsilon) = e^{-\beta(\varepsilon-\mu)}$
- Fermi-Dirac (for identical fermions): $n(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)} + 1}$

- As
$$T \to 0$$
, $n(\varepsilon) \to \begin{cases} 1 & \text{if } \varepsilon < \mu(0) \\ 0 & \text{if } \varepsilon > \mu(0) \end{cases}$

– Fermi energy $E_F = \mu(0)$, all states filled below E_F no states filled above E_F

• Bose-Einstein (for identical bosons): $n(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)} - 1}$