TPC Readout R&D in Canada

Santa Cruz Linear Collider Retreat, June 27-29, 2002

R. Carnegie, M. Dixit, F. Hartop, H. Mes, E. Neuheimer,
A. Rankin, K. Sachs, V. Strickland – Carleton University
J.-P. Martin – University of Montreal
D. Karlen – Carleton / Victoria

TPC Readout R&D in Canada

***** Past work on GEM based readout:

- test cell for space point resolution studies with collimated x-ray source
- 15 cm drift length TPC for tracking resolution studies

* New developments (since Chicago):

- charge dispersion
- TPC simulation package
- new multiplexed TPC readout structure
- new TPC under construction for magnetic field tests

Charge dispersion with resistive anodes

*For some TPC readout designs, the transverse size of charge clouds can be significantly smaller than the pad size

– would result in degraded resolution

- *One possible solution is to spread out the signals over wider area using a resistive anode
 - measurements are underway to determine if this is a viable solution

Observed signals

28 June 2002

Theory...

2D analog of telegraph equation

Consider a GEM with a resistive anode. Anode collects avalanche charge. Any localized charge signal will spread radially with time. The 2-D Telegraph equation:

0 < r < a (anode sheet radius) C = capacitance per unit area $R = surface resistivity (Ohms/<math>\Box$) $L \sim 0$ $k^2=1/RC$

• Boundary conditions:

 $Q = f(r) \quad at \quad t = 0$ $Q = 0 \quad for \quad r = a; \quad 0 \le t \le \infty$

• Solution for initial point charge: Take limit $a \Rightarrow \infty$ for $Q = \mathbf{\delta}(r)$ at t = 0 with $\int \mathbf{\delta}(r) dr = 1$ is given by: $Q(r,t) = \frac{1}{2k^2t}e^{-[r^2/(4k^2t)]}$

Incorporate finite size of initial charge cluster & amplifier rise & fall time effects to comare to measurement.

Optimization of pad response function

For 2 MΩ / and
 100 µm gap, the PRF is calculated to have a standard deviation of
 700 µm

 measurements are underway to verify this

TPC simulation package

*****written in Java

*easy to use

can build arbitrary TPC with GEM readout
any readout pad structure can be defined
sophisticated tracking algorithm

only simulates direct charge signals
does not simulate induced signals

Designing readout pads

Adding an ionization track

Signals on pads

Comparison with prototype TPC data

28 June 2002

Track fitting

Fitter Contr	ol for Readout	Mesh	
XY Fitter			
Set up XY fitte	er # of rows	s: 8	
Parameter	Value	fixed	
x0 (mm)	0.02734		
phi (rad)	-0.31483		
sigma (mm)	0.39565		
gain	3.0E3		
noise prob	0.0E0		
Calculate Like	lihood -Log(Li	kelihood) 14	6.40452
Do XY track f	t 2 🔻 sta	itus: success	3
Parameter	Estimated Erro	or correlation	IS
x0 (mm)	0.04752	0.22166	0.02369
phi (rad)	8.68606E-3	0.09799	
sigma (mm)	0.0403		

uses the <u>Nonlinear Optimization Java Package</u> (uncmin) translated to java by Steve Verrill

28 June 2002

From TESLA TDR: advocates chevrons

28 June 2002

Current favourite gas mix: Ar CF_4

- fast at low fields
 - low transverse diffusion in magnetic fields
- larger diffusion at higher fields

– Example: Ar CF_4 (98:2)

*****Single tracks with $-0.1 < \phi, \psi < 0.1$ *****Seven pad geometries sample same ionization

*****Single tracks with $-0.1 < \phi, \psi < 0.1$ *****Seven pad geometries sample same ionization

Dean Karlen / TPC Readout R&D in Canada

Comparison of pads for Micromegas

Ar CF4 (98:2): 5 rows of 2.5 mm x 5 mm pads

28 June 2002

New multiplexed readout structure

- 3x multiplexing to readout 192 pads with 64 FADC channels
 - easy for cosmics, multiplicity is low!
 - should we consider
 multiplexing for the real TPC?
 - use long pads for triggering

Construction of new TPC (TPC #2)

Cylindrical: fits TRIUMF (1T) and DESY (5T) magnets

– acrylic tubes, outer diameter 22.2 cm

– Use STAR-TPC electronics (256 channels)

Construction of new TPC (TPC #2)

*****3D view of drift cage:

Summary

Continuing to make progress on many fronts:

- resistive sheets to disperse charge (induction signals)
- cosmic tracking with direct charge signals
- simulation package development
- preparations for magnetic field tests
- *Interested in test beam studies mid/late 2003:
 - test beam facilities?