
PHYSICS 101B – HOMEWORK SET 4

Reading: Tipler and Llewellyn, Sections 8.4–8.5 and 10.1–10.4.

Due Friday 3/2/07.

1.) Consider a beam of particles travelling through a medium with an interaction probablity
of γ per meter.

a) Show that the the change ∆N in the number of unscattered particles suffered during

the traversal of a small length ∆x surrounding the position x is given by

∆N

∆x
= −γN(x)

where N(x) is the number of surviving particles at the position x.

b) Letting ∆x → 0, show that you get a differential equation for N(x) whose solution
is given by N(x) = N0e

−γx where N0 is the original number of particles in the beam.
(Hint:

∫

dN(x)/N(x) = ln N(x).)

c) Show thus that the mean-free-path, or mean survival distance, for any particle in
the beam is just λ = 1/γ. Note that the survival probability distribution implied by b)
is not normalized, so you’ll need to divide your weighted mean by the unweighted integral
∫

N0e
−γxdx in order to get the correct answer.

2.) Starting with Ohm’s law, show that the current density J for a wire of length L, cross-
sectional area A, and resistivity ρ, is given by

J =
V

ρL

where V is the applied potential difference between the two ends of the wire. Show that
this is equivalent to the expression J = σE where σ = 1/ρ is the conductivity, and E the

(uniform) electric field inside the wire.

3.) Problem 10.14 (8.17 × 106, 1.00 × 107, 1.42 × 107 (Ω − m)−1))

4.) Problem 10.17, except do it for gold, for which I know the density to be 19.4 g/cm3.
(6.41 × 104K)

5.) Problem 10.18. The answer 0.1% is very approximate.

In the following problems, you will approximate the Fermi-Dirac distribution function fFD(E; T )
in the following way. At T = 0, the distribution is the same as the true distribution: equal
to 1 for E < EF and 0 for E > EF . Now, assume that for T 6= 0, the distribution is 1
for E < EF − kT , 0 for EF − kT < E < EF , 1 for EF < E < EF + kT , and finally
0 for E > EF + kT . Thus, the effect of going to higher temperature is just to move the
electrons with energy within kT below the Fermi energy to be within energy kT above the

Fermi energy.



6.) Plot the true distribution fFD(E) and this approximate distribution on the same plot.

Make the plot for the specific case of gold at room temperature (T = 300K). Make your plot
over the range ±3kT about EF . Label your axes in terms of electron volts (eV).

7.) Using our approximate fFD(E), find the total energy contained in the motion of the free

electrons of piece of metallic gold of volume V as a function of temperature. Don’t forget
that

n(E) = g(E)fFD(E)

where g(E) is the appropriate density of states for a 3-d infinite square well of volume V –
see equation 8-66 in the text. You will find the following expansion useful:
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(Can you derive that expansion?)

8.) Use this to find the contribution of the free electrons to the molar heat capacity of gold
at room temperature. Compare this to the result 10.45 (pg. 461 of text; use α = π2/4) from

the more rigorous calculation due to Sommerfeld. Answer:
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where A is the atomic mass and ρ = 19.4g/cm2 is the density of gold.

9.) This result is substantially different than that for a gas of distinguishable particles. Why?


