PHYSICS 110A - HOMEWORK SET 1

Due Friday 1/15/10. Ten points per problem. Selected answers are provided.

Reading: Griffiths, Chapter 1.

1.) Consider a two-dimensional vector $\vec{v}=(x,y)$. If this vector is rotated by an angle θ (counterclockwise), it will develop a new representation $\vec{v}'=(x',y')$. In general, the components of \vec{v}' can be determined by contracting a two-by-two matrix $R_2(\theta)$ with the components of \vec{v} , i.e., $\vec{v}'=R_2(\theta)\cdot\vec{v}$.

Derive the form of the two-by-two matrix $R_2(\theta)$, explicitly in terms of θ . How would $R_2(\theta)$ be different if instead of rotating the vector conterclockwise by θ , the *coordinate system* were rotated counterclockwise by θ ? Demonstrate that your answers work by considering an initial vector $\vec{v} = (1, 0)$, and rotations of 45°.

- 2.) Problem 1.5 (do it only for the x component of the result).
- 3.) Problem 1.7. $(\hat{r} = 2/3\hat{x} 2/3\hat{y} + 1/3\hat{z})$
- 4.) Problem 1.12. (3 mi N, 2 mi W; 720 ft; 311 ft/mile NW)
- 5.) Problem 1.13
- 6.) Problem 1.20; but just do product rule (i), to get a feel for where these identities come from.
- 7.) Problem 1.26.
- 8.) Problem 1.33.
- 9.) Using geometrical argmuents, derive the expressions for the volume element $d\tau$ in cartesian (obvious!), cylindrical, and spherical coordinates.
- 10.) Problem 1.46.
- 11.) Problem 1.53.
- 12.) Problem 1.60; part (a) only.
- 13.) Problem 1.61. Answer a) by doing the integration explicitly, rather than simply by using the result of c) in a clever way. Also, remember that your answer to a) should be a vector!
- 14.) Use the divergence theorem and the law of superposition to prove Gauss's Law for a general charge distribution $\rho(\vec{r})$.