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where k is the unit vector along the z axis. Since /= (sin & cos ¢, sin 8 sin ¢, cos 8),
it follows that

g=

P (—sin @ sin ¢, sin & cos ¢, 0)={(—sin ¢, cos ¢, 0) (14.3.46)
sin

The rotation matrix is, from Eq. (14.3.44),

i) ~ \ 1 cos(8/2) —sin(0/2)e*
exp( —0 ) [sin(B/Z) o0 cos(6,2) j| (14.3.47)

According to our mnemonic, the first column gives the rotated version of [g]. -
We see that it agrees with |4, +) given in Eq. (14.3.28) up to an overall phase. -
Here is a summaty of useful formulas that were derived or simply stated:

[G;, O'J]+=2,I5U

[O'i, 0'1]=2iz Sx‘jkdk
k

Tr{6,05)=280p (@, f=%,9,20)

exp(—z'g g o-)=cos(6) I—isin(g) -0
2 2 2

(A-6)(B-5)=(A-B)/+i(AxB) o

Exercise 14.3.2.% (1) Show that the eigenvectors of 67 are given by Eq 14
(2) Verify Eq. {14.3.29).

Exercise 14.3.3.* Using Eqs. (14.3.32) and (14.3.33) show that the Paul: m
traceless.

Exercise 14.3.4.* Derive Eq. (14.3.39) in two different ways.
(1} Write 6,0, in terms of [o;, 0,]. and [oy, o;].
(2) Use Eqgs, (14.3.42) and (14.3.43).
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A

#i,=cos &
fi,=sin @ cos ¢ (14.3.26)

A, =sin & sin ¢
The kets |4, £ are eigenvectors of
A-S=n,8,+mS,tnS;
A n, ny— i,
2 Lntin, —H,

_7| cos@ sinf e (14327
7| sinfe? —cosf 327)

It is a simple matter to solve the eigenvalue problem (Exercise 14.3.2) and to find

cos(8/2) e 472 }

—sin(@/2) 7 %/?
i downy=ii-y=| @<

You may verify that as claimed

(A%S|AL> =+(fi/2)(isin 6 cos ¢+jsin 6 sin ¢ +k cos )
=+(#/2)A

An interesting feature of V, is that not only can we calculate (S} givéh
but we can also go the other way, i, deduce the state vector given {S} T
to do with the fact that any element of ¥, has only two (complex) COMmpon
and B, constrained by the normalization requlrement la?+|8|*=1, ie;th

degrees of freedom, and (S) contains exactly three pieces of information:. ] Wi
(8> as (fi/2)A, then the corresponding ket is |#, +) or if you want | ~4,:
way to state this result is as follows. Instead of specifying a state by a an
can give the operator A-S of which it is an eigenvector with elgenvalu
1nterest1ng corollary is that every spinor in V, is an eigenket of some spim op
7i-S with eigenvalue #/2.

Exercise 14.3.1. Let us verify the above corollary explicitly. Take some spino
ponents a = p, £ and f=p, . From {y|x>=1, deduce that we can write. g
and p,=sin{8/2) for some 0. Next pull out a common phase factor so that ‘thig:spil
the form in Fq. (14.3.28a). This verifies the corollary and also fixes #.
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it is in fact n+ 5 and hence the usual quantization rule, Eq. (16.2.32). If, however,
w actually vanishes at x; and x; because the potential barrier there is infinite (as in
the case of a particle in a box), Eq. (16.2.40) [and not Eq. (16.3.32)] is relevant.i
One can also consider an intermediate case where the barrier is infinite at one turning
point and not at the other. In this case the quantization rule has an (r+3/4) factor
in it

The WKB method may also be applied in three dimensions to solve the radial
equation in a rotationally invariant problem. In the /=0 state, there is no centrifugal
barricr, and the WKB wave function has the form

1 [T i
U(r) ~W ﬂn{% L p() dr’:|, p={2m[E-V(N]}'* (16.2.41)

where the lower limit in the phase integral is chosen to be 0, so that U(0)=0. The
quantization condition, bearing in mind that the barrier at =0 is infinite, is

Tmax 3
f (1) dr=(n+z)ﬁﬂ:, n=0,1,2, ... (16.2.42)
¢

where rmay 15 the turning point, This formula is valid only if ¥(r) is regular at the
origin. If it blows up there, the constant we add to # is not 3/4 but something else.
Also if 1#0, the centrifugal barrier will alter the behavior near r=0 and change both
the wave function and this constant.

Exercise 16.2.5.* In 1974 two new particles called the y and ' were discovered, with
rest energies 3.1 and 3.7 GeV, respectively (1 GeV =10 eV). These are believed to be nonrela-
tivistic bound states of a “charmed” quark of mass m=1.5 GeV/c? (i.e., mei=15 GeV) and
an antiquark of the same mass, in a linear potential ¥{(r)=Vy+4r. By assuming that these

. are the n=0 and n=1 bound states of zero orbital angular momentum, calculate ¥, using
. the WKB formula. What do you predict for the rest mass of y”, the n=2 state? (The measured

value is ~4.2 GeV/c?) [Hints: (1) Work with GeV instead of eV. (2) There is no need to

. determine k explicitly.]

Exercise 16.2.6. Obtain Eq. (16.2.39) for the Ax* potential by the scaling trick.
Exercise 16.2.7* Find the allowed levels of the harmonic oscillator by the WKB method.

Exercise 16.2.8. Consider the /=0 radial equation for the Coulomb problem. Since ¥ (r)
3 singular at the turning point r =0, we can’t use (#+3/4).
(1)} Will the additive constant be more or less than 3/47
. (2) By analyzing the exact equation near =0, it can be shown that the constant equals
1. Using this constant show that the WKB energy levels agree with the exact results.

he assumption that ¥(x) may be linearized near the turning point breaks down and this invalidates
. Eq. (16.2.29).
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554 Exercise 19.5.3. (1) Show that oo—~4xr; for a hard sphere as k—0.

CHAPTER 19 (2) Consider the other extreme of kr, very large. From Eq. (19.5.27) and the asymptotic Ide
forms of j; and n, show that 1i)un
: y

sin® &, o sin®(kro— It /2)
-

fnax = krg

i krg
o= Y oq;i;zj (20) sin® &, dl
=0 k o
=271

if we approximate the sum over [ by an integral, 2/+1 by 2/, and the oscillating function
sin® § by its mean value of 1/2.

Exercise 19.5.4," Show that the s-wave phase shift for a square well of depth ¥, and'
range ryp is

k
8o=—kry-rtan ' (E tan k’rg)

where k' and k are the wave numbers inside and outside the well. For & small, kr, is sotiie;
small number and we ignore it. Let us see what happens to 8, as we vary the depth.of’
well, i.e., change &¥'. Show that whenever &' ~k},= (2n+ 1}x/2ry, 8, takes on the resonant form
Eq. (19.5.30) with ['/2=7#k,/pr,, where k, is the value of k& when &'=k;. Starting w
well that is too shallow to have any bound state, show &} corresponds to the well developin
its first bound state, at zero energy. (See Exercise 12.6.9.) (Note: A zero-energy botind;

corresponds to k=0.) As the well is deepened further, this level moves down, and 00t
k4, another zero-energy bound state is formed, and so on. :

Exercise 19.5.5. Show that even if a potential absorbs particles, we can describc

8:(k) = nfk) e

where n( << 1), is called the inelasticity factor.
(1) By considering probability currents, show that

crim.=§ ¥ 0+ D177

Ca= % X, Q1)1+ 7 =2m c0s 25)
and that once again

Crot =4f Im f(0)




