PHYSICS 216 WINTER 2018 - HOMEWORK 1

Due in class Tuesday April 16, 2018.
Complementary reading: Sakurai and Napolitano 5.1-2 and 5.4, Shankar Chapter 17, Baym Chapter 11

Note: For this and all subsequent homework assignments, problems from Shankar can be found at http://scipp.ucsc.edu/~schumm/ph216/Shankar_homework.pdf

The main course website is
http://scipp.ucsc.edu/~schumm/ph216/

Problem 1

As we all know, the potential energy of an ideal pendulum bob of mass m, suspended by a massless string of length l, is given by $V(\theta)=m g l *(1-\cos \theta)$, where θ is the angle of the bob and string relative to the equilibrium (vertical) orientation.

In terms of the linear arc-length displacement s of the bob from its equilibrium position, write down the one-dimensional Schroedinger equation governing the motion of the bob. Expanding the expression for potential energy, rewrite this equation as the Schroedinger equation for a perturbed harmonic oscillator (keep only the leading term in the perturbation).

Under the assumption that the perturbation has no effect (i.e., that the pendulum behaves as a perfect harmonic oscillator), what is the ground- state energy of the pendulum? What is the difference between this and the true ground-state energy of the system, to leading order in perturbation theory?

Problem 2

Consider a hydrogen atom compoased of a hypothetical spinless electron and proton, so that fine and hyperfine effects are not in play. As we know, there is a four-fold degenerate transition between the ground and first orbitallyexcited state, which has a transition energy of

$$
E_{L_{\alpha}}=\frac{3}{8}\left(m_{e} c^{2}\right) \alpha
$$

However, if this atom is placed in a constant, spatially uniform electric field, the degeneracy is broken. Calculate the resulting energy of the four transitions to leading order in the electric field strength ε. Express the resulting eigenstates of the perturbed ground and first-orbitally-excited states in terms of the unperturbed hydrogenic egienstates $\psi_{n l m}$.

Problem 3

An electron is contrstained to move in two dimensions under a potential

$$
V(r)=-\frac{k e^{2}}{r}
$$

where r is the distance from the center of motion (origin) and k is the electrostastic force constant. Using the variation principle with the threedimensional Hydrogen ground-state wavefunction

$$
\psi(r, \theta, \phi) \propto e^{-r / a_{0}}
$$

as your trial-function inspiration, estimate the ground-state energy of this 'two-dimensional hydrogen atom'. Express your answer in electron-Volts, making use of the fact that

$$
\frac{m_{e} k^{2} e^{4}}{2 \hbar^{2}}=13.6 \mathrm{eV}
$$

Can you explain the difference you see between your answer and that for the three-dimensional Hydrogen atom? In doing so, it may help to note that the Bohr radius is given by

$$
a_{0}=\frac{\hbar^{2}}{k e^{2} m_{e}} .
$$

Problem 4

Consider a particle in motion in an attractive central potential $V(r)$ that increases monotonically from $r=0$ to $r=\infty$ such that $V(\infty)=0$. Show that the quantum condition for bound S-wave $(l=0)$ states is given by

$$
2 \int_{0}^{a} \sqrt{2 \mu(E-V)} d r=\left(N+\frac{3}{4}\right) h
$$

where a is the classical turning point.
HINT: This is a 3D problem; you'll want to work in spherical coordinates.

Problem 5

Shankar 16.2.5

Problem 6
Shankar 16.2.7

