
PHYSICS 216 – HOMEWORK 5

Due in my office by the end of the day Monday June 11, 2018.

Complementary reading: Sakurai and Napolitano, Sections 6.1-6.4 and 6.6-
6.8; Shankar Chapter 19; Baym Chapter 9

Problem 1

Show that the Green’s function

G(~r) = − m

2πh̄2

eikr

r

satisfies SE for point-source scattering

(
h̄2

2m
∇2 + E)G(~r) = δ(~r).

Problem 2

SCATTERING FROM A YUKAWA POTENTIAL

An object of mass m and wave-number k scatters elastically from a central
potential of the form

V (r) =
V0

r
e−λr.

Calculate the magnitude q of the momentum transferred to the particle by
the scattering potential as the particle undergoes a scattering through an
angle θ.

To leading order in the Born expansion, calculate the cms differential scat-
tering cross section

dσ

dΩ
(θ) = |f(θ)|2

for the elastic scattering of the object from the potential.
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Problem 3

Shankar, Problem 19.5.3. This problem begins: (1) Show that σ0 → 4πr2...
Note that a “hard sphere” is one for which the potential is infinite everywhere
inside some radius r0, and 0 elsewhere.

Problem 4 (Courtesy of Howie Haber)

Consider the case of low-energy scattering from a spherical delta-function
shell,

V (~r) = V0δ(r − a).

Under the assumption that ka ≪ 1 (so that only s-wave scattering is impor-
tant), calculate the scattering amplitude f(θ), the differential cross section
dσ/dθ, and the total cross section.

HINT: Solve the time-independent Schrödinger squation exactly, in the case
of l = 0, for the radial wavefunction R(r) ≡ u(r)/r. Consider the cases of
r < a and r > a separately. By integrating the Schrödinger equation from
r = a − ǫ to r = a + ǫ, for infinitessimal ǫ, show that

du

dr
|a+ǫ −

du

dr
|a−ǫ =

2mV0

h̄2
u(a).

Inserting your espressions for u(r) into the equation above, determine the
s-wave phase shift. In particular, find an expression for tan δ0 in terms of
V0 and the wave number k. Evaluate the phase shift in the limit ka ≪ 1
to simplify the expression, which should then allow you to complete the
problem.

Problem 5

A colliding beam experiment of counter-circulating equal-energy beams in-
volves red and green particles which, except for their color, are identical in
every other way. Each beam pulse consists of N particles evenly distributed
in a cylinder of radius a and length L. Beam pulses pass through one another
at a fixed spatial location at a frequency of f times per second. The ampli-
tude for the scattering of two of the particles off one another is dominated
by the first two terms of the partial wave expansion, with

1

k
T0 =

√
σ0
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1

k
T1 = eiδ

1

3

√
σ0

where k is the magnitude of the relative wave number of the plane waves
describing each of the counter-circulating beams. A small square detector of
area A is mounted R meters away from the collision point, at a angle θd from
the beam direction.

Note: I just realized that Shankar does use the nomenclature Tl; my Tl is
Shankar’s eiδl sin δl.

a) If the particles are bosons, calculate the rate of particles scattered into
the detector (number of particles per second) under the assumption that one
beam is entirely red and the other entirely green.

b) Calculate the rate of bosons scattered into the detector under the assump-
tion that each beam is exactly half red and half green.

c) If the particles are spin-half fermions rather than bosons, calculate the
rate of particles scattered into the detector under the assumption that one
beam is entirely red and the other entirely green. Assume the beams are
unpolarized.

d) If the particles are spin-half fermions, calculate the rate of particles scat-
tered into the detector under the assumption that each beam is exactly half
red and half green. Again assume the beams are unpolarized.

e) Calculate the total cross section for each of the following four cases: dis-
tinguishable bosons, indistinguishable bosons, distinguishable fermioins, un-
polarized indistinguishable fermions.
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