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The quark model

SU@3} - Quarks' + Mesons in the quark model -+ Baryons in the quark
model + Hadron masses in the quark model - Baryon magnetic moments -
Heavy-meson speciroscopy '

As we saw in chapter 8 the isospin symmetry of the strong interactions
leads naturally to the observation that all hadrons belong to I spin multi-
plets. In the absence of symmetry-breaking effects there is a degeneracy
in the mass of the members of a multiplet. The electromagnetic interaction
does not respect isospin symmetry and through it the degeneracy is
removed with resulting mass differences of a per cent or so. The isospin
operators commute with the strong interaction Hamiltontan H and
therefore with other operators which also commute with H, in particular
the angular momentum and parity operators. Consequently, all members
of an isospin multiplet have the same spin-parity.

In the last chapter we discovered that there are larger groups of mesons
and baryons. with the same spin-parity, these groups containing I spin
multiplets with different values of the strangeness quantum number. The

observcd regularities in the hadron spectrum led to the search for a higher

symmetry, ie. a symmetry higher than the SU(2) group of which isospin
is an example, which would explain the existence of these larger groups
of particles. A higher symmetry will involve a further additive quantum
number, in addition to I and I, which is conserved in the strong
interations but not necessarily in the weak and electromagnetic inter-
actions. The strangeness S is such a quantum number but the hyper-
charge* Y, the sum of strangeness and baryon number, is found to be
more convenient. The appropriate mathematical group is then SU(3).

* The name hypercharge arises because it is twice the average charge of an I spin
multiplet, as can be seen from the Gell-Mann—Nishijima relation Q = I; + ¥/2,

It
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In this chapter we show how, in spite of the fact that the symmetry is
quite badly broken, SU(3) and the associated quark model give a good
description of the observed hadron spectrum.

0.1 SU(3)

ro.r.1 The SU(3) generators

In the extension of SU(2) to SU(3) the basic doublet of SU(2) is replaced
by a triplet

L3’
Q=] ¢,
P

and this basic triplet is assumed to transform as
o9 =Up (10.1)

where the matrices U are arbitrary, unitary, unimodular 3 x 3 matrices,
a canonical representation of which is

U = exp(—1i0a-1). : (10.2)

The eight generators* 44, play an analogous role to the three Pauli
matrices in SU(2) and the standard form, which was mtroduced by
Gell-Mann,' is

o1 0 0 —i 0y - (1 00

;"1= 1 0 0 )»2= 1 0 0 l3= 0 ""1 0
0 00 0 00 0 00
0 0 1 0 0 —1 000
100 i 0 0190
00 O i 0

=0 0 =i 01 (10.3)
0i O 00 -

* In SU(n) there are n* — 1 generators of the group.
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o —
Table 10.1
. The structure constants of fiza=1
SU@3) J147= fras = fas1 = foas = fi16 = foar=1%
f4ss = f}.va = \/3/2 ’
As in SU(2), the generators satisfy the commutation relations
(34 34,1 = i 4 ' (10.4)

where the structure constants Jije» which are easily obtained by explicit
calculation, have the values given in table 10.1. The f, % 2re antisymmetric

under the interchange of any two indices. These matrices form a three.

dimensional representation of SU(3). Among the eight generators of the

-SU(3) group we note that only 1, and 4, are diagonal. In SU(2) the states

in a given'I spin multiplet were labelled with the eigenvalues of the
diagonal matrix i,. In a search for a higher dimensional representation
of the hadronic states it is appropriate to label the states by quantum

numbers associated with the eigenvalues of A; and Ag. Apart from an extra -

row and column of zeros the matrices A, i=1,2,3, are just the Paulj
matrices, i.e.

........

and therefore A,, 2, and 43 are associated with the J spin operators which
form an SU(2) subgroup of SU(3): in particular 43 is associated with I,
and linear combinations of 4y and 2, are formed to produce [ spin step
operators. The eigenvalues of Ag are related to the hypercharge ¥. In

- SU(3) the states in a multiplet are labelled with the eigenvalues of I, and

Y. Accordingly, the states in SU(3) multiplets will occupy sites on a
two-dimensional grid in I,-¥ space, in contrast to the one-dimensional
SU(2) multipiets.

As in the case of SU(2) we generalize (10.4) by dcﬁning the generators

. as F; = 3J;; the F, will then satisfy the commutation relations

[F, 1 = ifyF,. | (10.5)

The study of SU(3) amounts essentially to finding higher dimensional

NxN matrices F; which satisfy (10.5) and which transform N-dimensional
states according to

@ - "= (1 —i04-F)g. (10.6)

These states belong to N-dimensional multiplets of SU(3).

(b)

Figure Il
(a) The f
of SU3);
the step t
and ¥; ¢
triplet.
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To facilitate the search for these multiplets we form linear combinations
of the non-commuting operators to produces step operators. Specifically,

we define
Ii bl F1 i in \
13=F3
V, =F, +iF; > 107)
U;t = FG iiF-y
2
=—FB‘

10.1.2 The representations of SU(3)

The operators U, and ¥, are called ‘U spin’ and ‘¥ spin’ operators. We

shall have particular use for the U spin operators later in this chapter.
We begin with the fundamental triplet. An examination of the matrix

representations of the commuting operators '

0

N 10 0
N L=l0o -1 o] rv={o1 o
| R
_é. +«£ 1’3 0 0 0 g 0 —'%‘
3 shows that the fundamental triplet is described by the three eigenvectors
L ] : :
() 1y [0
1 0
i\ | 0 0
. L, . o
U \ I Vv, // These are simultaneousl},r eigenstates of I; and ¥ with eigenvalues (I3, 1)

—>I- of 3,4), (=4, %) and (0 —2), i.e. the fundamental triplet cons:sts of an [
U- } spin doublet with Y = % and an I spin singlet with ¥ = —2 The weight
dlagram — a plot of Y against I, — for the fundamental trlplet is shown

s V- in figure 10.1(a).
(1) S ‘In order to proceed further we require the commutatlon relations
' between the step operators defined in (10.7) and I and Y. They are
Figure 10.1 ‘
(a) The fundamental triplet -
of SU(3); (b) the action of [IasI:t] =+, [13,—Ui] = FiU, [13, V:t] = +iV,

the step operators [, U,
and V; on the fundamental

and _ (10.8)

triplct. ‘ tY, Ii] = 0 [K Ui] = '_1"_ U:t [Y, V:t] = i Vi'
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We know from our study of I spin that the state I.}I, I}, for example,
is an eigenstate of I? and I; with eigenvalue Iy =1+ 1, i I, is the
raising operator for I spin. From the commutation relation [I,, U, ] =
TiU, we have :

Ian“, Ia) = (U;tIs + '%Ui)ll, Is)
= Us(l; FHIL L)
=l F UL I3
and therefore the operator U, (U_) lowers (raises) the eigenvalue of I, by
1. In a similar fashion, using [Y, U,] = +U,, it can be shown that

U, (U_) raises (lowers) the eigenvalue of ¥ by one. The overall effect of
“the commutation relations (10.8) can be summarized by the statements

H Wty

I, induces the changes AY =0, Al; = +1
U, induces the changes AY = £ 1, Al; = T4
V, induces the changes AY = +1, Al; = +3}

and the action of these step operators on the fundamental triplet is shown
in figure 10.1(b).

A particular representatlon or multlplet of SU(3) is compietely
specified when it is known which sites in the Y-I; plane are occupied and
the multiplicity at each site is known, ie. the number of states with a
particular weight. A weight diagram contains precisely this information.

~ As in SU(2) all states in an irreducible representation can be génerated
from a particular state by repeated application of the step operators,
Before discussing the actual ‘multiplets which occur in SU(3) we list some
of their general properties.?

(@) The multiplets have hexagonal symmetry so that in general the
boundary is a six-sided non-reentrant figure; in some cases it may be
triangular,

{(b) Every possible site on and inside the boundary is occupied by at least
one state. o

(c) The multiplicity of weights on layer 1, the boundary (see figure 10.2),
is one, that on layer 2 is two in general, and so on until all sites have
been accounted for. If a triangular layer is reached the multiplicity
ceases to increase thereafter so that all sites on and inside a triangular
layer have the same multiplicity.

It is convenient to have a shorthand notation which will succinctly
describe the character of a particular SU(3) representation. If, starting
from the state with the highest weight (maximum I, value), p applications
of V_ (U, and I,) and q applications of I (¥, and U_) are required to
generate the boundary the multiplet is simply denoted as (p, ¢). Thus,
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Figure 10.2

Weight diagram of a general
SU(3) multiplet showing the
multiplicity at each site. -

for example, the fundamental triplet shown in figure 10.1 is denoted by
(1, 0) and the multiplet in figure 10.2 by (5, 2). It can be shown? that the
total number of states or the dimensionality of a multiplet n(p, q) is

n(p,q)=31+p)1+g2+p+0q

so that the dimensionality of the (5, 2) representation is 81. Sometimes
multiplets are labelled simply by their dimensionality, e.g. 3 for the
fundamental triplet and 81 for the (5, 2) representation.

- It is clear that in the irreducible representations of SU(3) there can, in
general, be a degeneracy of states with a particular weight (I3, Y) so that
an additional quantum number is required to distinguish between them.
To be a good quantum number it must commute with both I; and Y.
The square of the total I spin, 1> = 3(I. 1. + I_I,) + I3, has this property
so that its eigenvalues can be used in conjunction with I3 and Y to specify
the states uniquely. Effectively, the degeneracy arises because for a given
weight (I, Y) states from different I spin multiplets can contribute to the
multiplicity of the weight. By way of illustration, consider the states with
Y = 0 in figure 10.2, i.e. the states that sit on the I; axis. In essence these
states form a reducible I spin multiplet. Seven of these states belong to
an I = 3 muitiplet, five to a multiplet with [ = 2 and the remainder form
an I spin triplet. o

_Before we attempt to combine multiplets in SU(3) we would like to
make a remark concerning the fundamental representation. Apart from
the SU(3) singlet (0, 0), the fundamental representation (1, 0) with dimen-
sionality 3 is the simplest. Unlike the situation in SU(2), where the
fundamental nucleon doublet (2) with dimensionality 2 and its conjugate

N

- o N ke W oW o

o

o ww
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3
A
. -1 .
[
-4 +H L
W -4
(a)......(1,0)
3
b
+%
-_I__._
_i' +i’ 11
. __v} .
() (0,1
-Figure 10.3

The fundamental triplet 3
and the conjugate triplet 3 in
SU(3). :

Figure 10.4

Graphical technique
illustrating the reduction of
the product 3® 3.

———

2, ("g),itransfol'm in the same way (see example 10.1), the conjugate
representation 3 in SU(3), denoted by (0, 1), does not transform in the
same way as the 3 representation. The weight diagrams of these inequivalent
representations of SU(3) are shown in figure 10.3,

10.1.3 Products of representations

The simplest way to obtain products of representations in SU(3) is to use
a graphical technique. Any required reduction can be carried out by
making use of the general properties of irreducible representations
introduced in the last section. To illustrate the procedure we consider the

product 3 ® 3. A superposition of the ‘weight diagram of figure 10.3(b)on J
~each weight in figure 10.3(a) yields the result shown on the left in figure

10.4. We note that the weights on the boundary of the product repre-
sentation have unit multiplicity in accord with the properties of irreducible
representations. The multiplicity at the centre of the representation, layer
2 in the notation of the last section, is, however, three and for ap
irreducible representation it ought to be two. To conform with the
properties of irreducible representations the nonet must reduce to an octet
and a singlet as shown in figure 10.4. The octet (1, 1) consists of two I
spin doublets with Y = +1and ¥ = —1 and an [ spin triplet and a singlet
both with ¥ = 0: the SU(3) singlet is also an / spin singlet with ¥ = 0.
In the notation of group theory the product is written

33=8@1. ' (10.9)

As a second example we derive the result 3 ® 3 = 6 @ 3. In this case the
superposition technique yields the nonet of states with the configuration shown

~onthe leftin figure 10.5. In this case there are three sites on the boundary which

are doubly occupied. Again, to conform with the requirement of unit multiplicity
on the boundary the nonet must reduce to a sextet (2, 0) and the conjugate triplet
©, . ' '

Finally, we consider the product of three SU(S) triplets, 3® 3 ® 3. We

1 e w o ® e
L W

1 I | | i
+
-1 <t 0 # +1 1,

33

®

* Figure 10

Reductiol

I3

Figure 10.
Reduction

_ I®e.
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Figure 10.5 L g
. Reduction of the product -1 -+ 0 H 4175
303 3(93 = 6 ® 3
- w1 ® (3.0)
 Y——, :\ X % %
= XX @ K\ X /
x\//
I;"igure 106 ] : ‘
- Reduction of the product 3 6 = 8 - 10
os ® ®
have, from the last example,
333=306®3)=3R663®3. (10.10)

We already know that 3® 3 = 8 @ 1, therefore we consider the product
3 ® 6. Again, the superposition technique yields the weight diagram on
the left of figure 10.6 which is clearly reducible. The reduction is effected
by removing one of the states from each site on the boundary with
multiplicity two. By the rule that all inner sites of an irreducible
representation must be occupied, and that successive inner layers have a
multiplicity which increases by one, we see that we must also remove two
of the states from the site which has a multiplicity three. This procedure
produces an octet (1, 1) and a decuplet (3, 0) both of which are irreducible.
Thus 3® 6 =8 @ 10 and, finally,

33@3=10808@10. | (10.11)

We note that the decuplet consists of an I = 3 quartet with ¥ = 1, a triplet
withI = 1and Y=0,a Y = —1 I spin doublet and an I spin singlet with
Y=-2 ' : '
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10.2 Quarks

The simplest and most elegant SU(3) scheme which successfully describes
the observed hadron spectrum is the quark model proposed by Gell-
Mann? and independently by Zweig.* They introduced a triplet of quarks
with baryon number B = { and proposed that the fundamental SU(3)
triplet consists of a doublet of strangeness O quarks with I = 3, the up
quark u {I; = +1%) and the down quark d (I; = —3), and an [ spin singlet,
the strange quark s with strangeness — 1. The conjugate triplet 3 consists

of antiquarks with opposite sign of the additive quantum numbers I;, B

and S. Thé quantum numbers of the quarks and antiquarks are summarized
in table 10.2. Note in particular the fractional charges +2 and —3 of the
quarks. Furthermore, the eigenvalues of I;.and ¥ of the quark triplet are
precisely those of the diagonal generators given in section 10.1.2,

The weight diagrams for the fundamental quark and antiquark triplets
are shown in figure 10.7. '

10.3 Mesons in the quark model

The most economical way to construct mesons in the quark model is to

form g combinations by taking the direct product of the fundamental 3

and 3 representations. The nonet of states is obtained in the usual way

Yh by superimposing the antiquark weight diagram on each site of the quark

@ weight diagram and, in accordance with the properties of irreducible
de -1 eu rcpresentations, the nonet reduces to an octet and a singlet as shown in

-3 1oL figure 10.8. The quark content of the states on the boundary of the octet

Y =0 and I = 0 contains all the quarks on an equal footing and the
normalized singlet state is therefore '

3
{1,10,00} = -\/% (uit + dd + s5): : (10.12)
v\ : o
: : $e4. . The notation on the left-hand side of (10.12) is {n, |1, I,>} where n is the
] __}_,_ dimensionality of the representation. Equation (10.12) is seen as a natural
| WP A extension from SU(2) to SU(3) if we make the substitution p — u,n - d,
n | d p — @ and fi — @ (see example 10.2). Of the two states at the centre of
: -the octet, one belongs to an I spin triplet and the other is an I spin singlet:
both have I, = 0. We can write down the quark wavefunction of the I; =0
3 ' triplet state immediately, :
Figure 10.7 _
Weight diagrams for the 1 _
fundamental quark and - {81,0)} = — (ui — dd). ' : (10.13)

antiquark triplets. \/ 2

s8-3 is unambiguous and is indicated in the figure. The unitary singlet with

i

Tabi
Qua
fight

Figu -~
The

redu
singl -
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Table 10.2
Quantum numbers of the
light quarks and antiquarks

Figure 10.8

The nonet of g4 siates
reduces t6 an octet and a
singlet.

Flavour Spin Charge I; Baryon number Strangeness Hypercharge
u 3 +3 43 3 0 3
R L :
$ 1 -1 0 i -1 ~1
A S T 0 -3
d P43 43 ~3 0 -4
3 1 +1 0 -1 +1 +3

rj |

+if- dse e ug _ dse eu

ofdie < sud = die se eud

(u, dd, 55) ®» -

-1 sue [ ] sa su e L] Sa

(IR S BN
-1 40 # 4+ 5

©
®

Alternatively, the state (10.13) may be obtained by using the I spin
lowering operator on the |1,1) state, i.e. | —ud). We note that since the
s and 5 quarks are I spin singlets they cannot couple to give an [ =1
state. They can, however, couple to give an I = 0 state so that the [ =0
state at the centre of the octet will be a linear combination of wil, dd and
53. The propcrly normalized state, which is orthogonal to both (10.12)
and (10.13), is

8,10,05) = — (uit + dd — 255). (10,14)

76

The quark model therefore predicts that mesons should belong to SU((3)
octets and singlets. In the octets there are two I spin doublets with
Y= +1and Y= —1 which are particle and antiparticle, and an I spin
triplet and an [ spin singlet both with ¥ = 0. The unitary singlet is of
course an / spin singlet. This is precisely the hypercharge —I spin structure
which is observed amongst the known mesons.

Let us now check that the other quantum numbers such as spin- panty
and C-parity, where appropriate, agree w1th the experlmcntally observed
values. Recall that the quarks are spin § fermions so that in a g4 state
the spins may couple to give a total spin § =0 or 1. If the quark-
antiquark pair have relative orbital angular momentum L the total
angular momentum will be the vector sum J = L + S. The parity of the
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Table 10.3

The possible JF values of
meson states arising from the
coupling of quark—antiquark
spin and relative orbital
angular momentum

Quark spins
Orbital angular :
momentum L Singlet S =0 Triplet § =1
0 : 0 1=
1 1* 0t 1* 2
2 2 127 3"

states will be (—1)L*! where the factor (—1)* arises from the orbital
motion and the factor —1 is due to the opposite intrinsic parities of quark
and antiquark. The possible J” values of the meson states formed from
the coupling of quark—antiquark spin and orbital angular momentum are
shown in table 10.3. The pseudoscalar and vector mesons appear as g4
states with L = 0 and total quark spin 0 and 1 respectively, and the 2*
tensor nonet results from the orbital excitation (L = 1) of the spin-triplet
gg state. In figure 10.9 we show the SU(3) multiplets for the 07, 17 and
2¥ mesons. o

C-parity is a good quantum number only for states with g =B =8 =0
where here S is the strangeness quantum number, and is therefore
applicabie only to the unitary singlets and to the two states at the centres
of the octets. The argument which leads to the determination of C for

K® K*
L ] L ]
i
L] + .
"e ﬁs *7 m
. .
K- K
K*  K**(892)
L] L
(]
pe e opt
H Y - .
g . (]
- __.
Kt- K&O(ng)
K K3*(1430)
[ ] L ]
as ay ’
. : *a}(1320) .
fg X ’ f1

L
K3~ - K3'(1430)

Figure 10.9 The JF =07, 1" and 2* mesons arranged in SU(3) octets and singlets. The
states shown as g, 7,, wg, @, and fg, f, are mixtures of the physical states n and »'(958),
w(783) and ¢(1020), and £,(1270) and {;(1525). Mixing in the meson nonets is discussed in
section 10.5. : : '

Te ©

Qe
the -
ter

Io.

q

Figu
Relat
mom
systel -




BARYONS IN THE QUARK MODEL « 335

Table 10.4 :
Quark model assignments of
the pséudoscalar, vector and
{ensor mesons

uil, dd, s§ "~ ud,ui, dd us, ds
.2.S+1LJ . JPC I--—-O I=1 I=%
15, 0~ 1, 1'(958) n K
35, | B (1020}, «w(783) p(770) K*(892)
P, 2t F5(1525), [,{1270) a,(1320) K%(1430)

a pp state has already been given in section 8.8: for a ¢4 state the argument
is identical so that C = (—1)-*5 where S is the total spin of the g7 system
and L the relative orbital angular momentum, We are thus led to the
quark model assignments of the psendoscalar, vector and tensor mesons
shown in table 10.4.

0.4 Baryons in the quark model

Figure 10.10

Relative orbital angular
momenta in a three-quark
system. - '

The quark model description of baryons is more complicated than for
mesons. All hadrons must be colour singlets and in section 10.3 it was
tacitly assumed that in each g4 pair the colour—anti-colour combinations
yielded colour-singlet mesons. Since quarks have B = } the simplest way
to construct baryons from the basic quark triplet is to form gqq states.
The quark content of these states is unambiguous but in order to explain
the observed baryon spectrum we need to consider the symmetry of the
quark wavefunctions. The overall wavefunctions '

¥ = y(space) qb(ﬂavéur) x(spin)¢&(colour)

must be antisymmetric. Each quark flavour comes in three colours, red,
green and blue (RGB), which form a fundamental triplet of the SU(3)
colour group, SU(3)C, which, unlike SU(3) flavour symmetry, is assumed to be
exact. The SU(3),. singlet wavefunction for baryons

£ = ﬁ (IRGB> + |GBR> + |BRG) — |GRB)
~ |BGR) — |RBGY}  (10.15)

is antisymmetric in the exchange of any two quark colours. Its in-
clusion in the overall wavefunction ¥ guarantees antisymmetry provided
Y(space) ¢p(flavour) y(spin) is symmetric. '

Let us focus on the lowest-lying baryon multiplets, the J P =4* octet
and the 3* decuplet. The relative orbital angular momenta {and I' in
these three-quark states (figure 10.10) are assumed to be zero and therefore
(space) is symmetric. In the direct product of the SU(3) flavour and the
SU(2) multiplets we therefore require symmetric combinations. In SU(3)
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Figure 10.11

{a) The 3* baryon decuplet
and (b} the ¥ baryon octet.
(c), (d) The quark content of
the decuplet and octet states
respectively.

we have

3@3R3=10;08,, 08, &1, (10.16)
and in SU(2) the direct product of three spin doublets is
20202=4;® 2P 2y, | (10.17)

The subscripts denote the symmetry of the wavefunctions. For example,

the direct product of three flavour triplets leads to a symmetric decuplet,

two octets of mixed symmetry Mg and M, and an antisymmetric singlet,
In the mixed symmetry octets S (A) implies that the wavefunctions are
symmetric (antisymmetric) with respect to interchange of the first two
quark flavours. The symmetry properties of the multiplets become
apparent only on examination of the wavefunctions of the states (see
examples 10.4-10.7).

" In order to determine the nature of the baryon multiplets predicted
by the quark model with spin, SU(6), we must combine the SU(3)

flavour multiplets with the SU(2) spin multipiets. In the direct product
(105D 8y, D 8y, B 12) ® (45 P 2y, D 2,,) the only symmetric combi-

nation is the 56 representation (10,4) @ (8,2). The notation here is
(msu(ap Msuczy) Where n is the dimensionality. The quark model with spin
therefore successfully predicts a decuplet of 3* and an octet of 3 baryons.
These multiplets and their quark content are shown in figure 10.11.
Having successfuily assigned the low-lying mesons and baryons to

1ke . . 0 A(1232) d(id mid u:d Ul.lu
ol o . »3(1385) dc.ls . ugs uus
-1 ¢ eZ(1530) : dss  uss
-2 )" 558
[T DU S A O T [ .
-4 -1-40 ++1 + L 10
(a) JF= (@
];A_ . p udd  uud
. .
- zo - +
ok 3 4 E. dds “‘35 uus
] L]
A uds
S R S . o
= = dss  uss
-2 .
1 | 1 1 L
R -
-1 0+ +17L 8

(b)

JP=-&"‘

(@

10.§
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multiplets of SU(3) it is natural to investigate the quark model further by
examining its predictive power and comparing with experiment.

10.5° Hadron masses in the quark model

1t is clear from the mass splittings in the multiplets that although flavour
SU(3) describes the hadron spectrum very well, it is not an exact
symmetry. If it were, the states in a given multiplet would be degenerate.

In an attempt to explain the mass splitting Gell-Mann proposed that
the strong interaction Hamiltonian, H, consists of two parts — a ‘very
strong’ interaction which is assumed to be exactly SU(3) invariant and
described by a Hamiltonian Hj, plus a ‘medium strong’ interaction
described by a Hamiltonian H', which is assumed to give deviations from
exact symmetry. H, will therefore commute with all the SU(3) generators,

[Hy, F1=0 (i=1, 2,.. 8 (10.18)

while the symmetry-breaking part of the Hamiltonian will have non-zero
commutation relations with some of the F;, '

[H,F]#0. ' (10.19)

 Since isospin and hypercharge are conserved in the strong interaction, it
follows that

[H', Y] = [H, I} = [H', I,] = 0. (10.20)

Gell-Mann proposed that H' should transform like one of the SU(3)
generators and, since Fy — the hypercharge — is the only generator that
commutes with I, I, and I_ and, of course, with itself, he suggested that
H' should transform like the hypercharge.

In order to make quantitative statements concerning the mass splitting
it is convenient to work with U spin. In section 10.1.2 we saw that the U
spin shift operators relate multiplet members with different hypercharge
and I spin, i.e. members with different masses. From inspection of any of
‘the multiplets it is apparent that '

Y=1U,+40. ' ' (10.21)

Since all members of a U spin multiplet have the same electric charge it
follows that @ commutes with all the U spin operators: '

[U.g]=0. ' (10.22)
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T m—
Iri other words, the hypercharge, and consequently the symmetry—breaking
part of the Hamiltonian H’, transforms as a linear superposition of the
third component of a vector in U spin space and a U spin scalar. Thyg
we may write : -

H' =H, + H, O (1023)

where v and s stand for vector and scalar respectively. The mass of a
particular U spin state (U, U,) is then given by

KU, UplH|U, Us) = CU, Us|Hy + H, + Hi|U, Up)
= mgy + m, + m,. (1024

The contribution m, to the mass arising from the ‘very strong’ part of
the interaction is the same for all members of a multiplet. In a given
U spin multiplet m, is the same for all members while m, is proportional
tO U3. . . - ) - :

When equation (10.24) is applied to the U spin quartet of negatively
charged * baryons (see appendix J) we obtain the mass relation {example
10.8)

mz_mAsz_mzzmQ_‘.msz ISOMCV.

Since the quark content of the A, £, E and Q is ddd, dds, dss and sss
respectively, the near equality of the mass differences suggests that in some
sense the mass of the strange quark is about 150 MeV greater. than the
‘mass of the d and u quarks. The much smaller mass difference between
members of I spin multiplets suggests that m, ~ m,.

For the neutral members of the £* baryon octet the relation

© dmy + Smgo = dmgo + 3mye ' ©(10.25)

holds (see example 10.9). This is an example of the Gell-Mann—Okubo
mass formula and, on substituting the measured mass values, is found to
be accurate to about 1 per cent. :
Since the SU(3) couplings are the same for any octet one might expect
the results for the baryon octet to apply without change to the meson
octets. Thus, for example, for the pseudoscalar mesons one might predict

omg)=hm, tim,. (10.26)

The masses of the K° and K° are equal by the CPT theorem so that one
expects

Mo = §(4myo — mya). : {10.27)
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~ On substituting m, = 549 MeV, my = 498 MeV and m, = 135 MeV into
equation (10.27) one finds a discrepancy of about 12 per cent. It is found
that the mass formula works better for mesons if the square of the particle
mass is used rather than the mass.* The Gell-Mann—Okubo mass formula
for the pseudoscalar mesons then becomes

m,;;o = %‘(4"1]2&0 — mﬁo). ) (10.28)

The discrepancy in. this case is still about 7 per cent. However, it is found
that the #° is not a ‘wholly octet’ state: because of SU(3)-breaking the
‘physical #° and #' are mixtures of the SU(3) octet and singlet states.
The Gell-Mann-Okubo formula (10.28) assumes no mixing between
‘the SU(3) octet and singlet states. In the presence of mixing we can write

5’ =14, cos 0 + #g sin B

10.29
# = —#, sin & + #g cos # ( )

where ' and » denote the physical states, #, and #4 the singlet and octet
states and 0 the mixing angle in the pseudoscalar nonet. The physical
states ' and 5 are related to the SU(3) singlet and octet states by a -
rotation through the angle 6. For small 8 the parametrization (10.29)
implies that the #’ is largely a singlet state and the # largely an octet state.
We assume that the matrix elements of the Hamiltonian, or the mass-
matrix elements, are quadratic in the mass rather than linear. With respect
to 1, and 7 base states we have

2 2N\ ' '
H("l) - (Mgl M;B)("l) | (10.30)
Hsg ‘ Mis Mzs/ \1s ' :
with M2, = {(m2 — m2), in analogy with equation (1.0.28). Diagonalization
of the mass matrix (see example 10.13) leads to

2 il } )
tan? 8 = Mis - my ' (10.31)

2 2
my — Mgg

Similar expressions hold for the vector- and tensor-meson nonets in
which there is ¢—w and f,—f, mixing respectively. The mixing angles are
@, = —11°, 6y ~ 40° and 8 ~ 32°. Equation (10.31) does not determine
the sign of the mixing angle: it is negative (positive) according to whether
the mass of the mainly octet member is less than (greater than) that of
the mainly singlet member.

* Some justification for this derives from the Dirac equation (section 11.4.3) which
describes the relativistic motion of spin 4 fermions and leads to fermion propa-
gators which depend on the fermion mass. Mesons on the other hand are described
by the Klein—Gordon equation (section 11.4.1} which leads to meson propagators
dependent on mass squared.
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By introducing the mixing angle § we have obtained consistency
between the observed masses of the mesons, but this would be only of
passing interest if no other consequences resulted from the concept of
mixing. Important predictions concerning the dominant decay modes of
the isoscalar states result from the observation that the 1~ and 2% nonets
are very nearly ‘ideally mixed’. The singlet and octet wavefunctions for
the isoscalar states are

1
NE

{8,10,0)} = Vs = 71_6 (uit + dd — 2s5).

{1,10,00} = ¥, = — (uil + dd + s5)

In general, the octet-singlet mixing is parametrized by the equations

m, =, cos O + g sin @
Mg = —, sin 6 + g cos 6

where m, denotes the physical, mainly singlet meson and mg the physical,
mainly octet meson. If sin 8 = 1/,/3, we have

and the nonet is said to be ideally mixed in the sense that the singlet
state consists only of ui and dd quarks and the octet state of s§ quarks.
Ideal mixing occurs for @ = 35°: this is approximately the case for the
1~ and 2* nonets but not for the pseudoscalar nonet. We would therefore
expect that the mainly singlet members of these nonets should decay
predominantly to pseudoscalar mesons consisting of u and d quarks
(pions) and the mainly octet members to strange pseudoscalar mesons
(kaons). This is borne out by the observed branching fractions,
B(e — KK) ~ 84 per cent and B(w — n*n~ 1% = 89 per-cent, for the 1~
isoscalars, and B(f; - KK) & 71 per cent and B(f, — nx) ~ 85 per cent
for the 2% isoscalars. In contrast, the branching fraction for the decay
@ = n*n~n° which is favoured over the KK decay mode by phase space
considerations, is only about 2 per cent. We return to the suppression of
this decay mode in section 10.7.2. '
So far in this section we have obtained mass relations between members
of various SU(3)s4,00 multiplets, but have said nothing concerning
the value of m, in equation (10.24) — the common mass which all members
of a specific multiplet would have if SU(3)gjy00, WETE an exact symmetry.
Why is m, different for different multiplets? Why is it, for example, that
the mass of the K*, with quark content us, is less than that of the
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K**(892) which has the same quark content? Similarly, why is the A*
(uud) heavier than the proton (uud)? The pseudoscalar and vector meson
octets differ in the relative orientation of the quark spins: they are
antiparallel in the 0~ octet and parallel in the 17 octet The spins of the
three quarks in the baryon octet couple to give J¥ = 3+ while in the 2
decuplet they are parallel. It seems likely, therefore, that lf we view hadrons
as bound states of interacting quarks, the mass differences between
multiplets and, indeed, between members of the same muitiplet, can
be attributed to a spin—spin interaction. _

The currently accepted theory of interacting quarks is quantum chromo-
dynamics (QCD) in which coloured quarks interact via the exchange of
coloured gluons. Like the photon in QED the gluons are massless and
at short distances the QCD potential has the form. of the QED Coloumb
potential,

V(r)z—%f S (1032)

" where a is the strong coupling constant. in QED, the spin—spin interaction
gives rise to hyperfine splitting® in which

AEyes = 3, - puoi(0))2. (10.33)

In units in which # = ¢ = 1, the magnetic moment y; of a particle with
electric charge e;, spin s; and mass m; is given by

w="ly, - : (10.34)

M,

Hence,

Smx $.°8
AEhfs = — [y (O))? -2

mm,

(10.35)

where we have used the relation e e, = ¢* = 4na, « being the fine-structure
constant.. In equations (10.33) and (10.35) ¢(0) is the value of the
wavefunction y(r;, r,) at zero separation. To obtain the analogous result
for QCD we have to replace the electric charges e; and e, by the
appropriate colour charges (see appendix M). For mesons and baryons
this amounts to the substitutions

.4: —
. {3% (99)
‘ s%,  (99)
S0,

32 5",

AEy;, = — ma [P (0)* (10.36)

mym;
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for mesons, and

By, = O T 5T (10.37)

i<jmgmj

for baryons. We therefore construct a simple model in which hadron
masses are supposed to arise from a sum of constituent quark masses and
hyperfine interactions. Thus, for mesons

m(qsds) = my +my +a 12 | (10.38)
: mynt,

and for baryons

: 5:°5-
m(gig,q3) =my +my+my +a’ y —2L. (10.39)
i i<j m.-mJ-

We will regard the constants a and o' and the quark masses as free
parameters and attempt to explain the hadron mass spectrum with a
consistent set of values.

By way of illustration we calculate baryon masses and leave meson
masses as an exercise (example 10.14). In terms of the spins of the
constituent quarks the baryon spin J is given by

J‘Z = (sl_'*"sZ + 33)2 = S% + S% + S% + 2(31'32 + 55, + Sz°53)

hence,

Y s =3li+ D - =

i<j

10.40
—2  forj =1 (octet). ( )

{4—% for j = 3 (decuplet)
Consider first the octet baryons. For the nucleon we have (equating the
masses of the u and d quarks)

3 I ° .
My = 3m, — Z:?" (10.41)

In the evaluation of the £ and A masses we have to take into account
the fact that m; > m,, m, in the calculation of the hyperfine splitting term.
The £ and A have isospin I =1 and 0 respectively. Since the strange
quark has I =0, the u and d quarks must be in an I = 1 combination
(symmetric) in the £ and I = 0 (antisymmetric) in the A. Therefore, in
the I the spins of the u and d quarks must couple to give spin 1
{symmetric) and in the A they must give spin 0 (antisymmetric) in order
that the spin/flavour wavefunctions be symmetric: the antisymmetric
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colour wavefunction guarantees overall antisymmetry. Thus, for the £ we
have

J2 = (s, +5)° =52+ 83+ 25,754 =2
and

-Hence,

Sy°8a . Sy'Sy  $4°S
mA-—-mu+md+ms+a'(“ + ==+ s)
’ mumd m,mg mdms ’

5,5, 1
= 2mu.+ mn, + ﬂrl: 2d + - (su.ss + sd'ss)] '
) m, n,m
Noting that s 5, + 5478, = 5,°85; + §1°83 + 583 —~ 8,83 = —3 + 3 =0,
we have, finally,
3a .
ma = 2m, + m, — ——;. (10.42)
4 m;
A similar calculation yields
a1 4
My = 2m, +m, + — (—2 - ) (10.43)
- 4 \ms

m,m,

The = mass is obtained from equation (10.43) by the interchange u < s,
hence- ' :

mZ  m,m

11 4 PN
mg = m, + 2m, + %—(— - ) ' (1044)
In the case of the 3° decuplet, the quark spins are aligned such that
each pair combines to give spin 1. Thus, for example,
J%z =(s; + 5" =5} + 53+ 25,5,
and
spvsy =30+ D —s1(s; + 1) — 5552 + D] = i

Hence, for all states in the decuplet,

"€, == . — . =1
$1*8; = §;°8§3 = §;°83 = 3.
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Table 10.5
Quark model predictions for the masses of the 3* baryons

Coeflicient Coefficient _ Predicted mass/ Observed mass/
Baryon of myormy of m, AE,;, (GeV/e?) (GeV/c?)
N 3 0 —3a'/4m? 0.939 0.939
A 2 1 —3a’'/4m? 1.114 1.116
z 2 1 (3a’/4m?) — (a'fm,m,) 1.179 1.192
B 1 2 (a'/4m2) — (a'/m,m,) 1,327 1.318
A(1232) 3 0 3a'/4m? 1.239 1.232
T(1385) 2 1 (@'/am2) + (a'/2m, m,) 1.381 1.385
E(1530) 1 2 (a@'/4m2) + (a'[2m,m,) 1.529 1.533
Q- 0 3 3ad'/4m2 1.682 1.672

(After Gasiorowicz S and Rosner.J L 1981 Am J Phys 49 (954).)

Table 10.6

. Current and constituent Constituent mass / (MeV/ )
masses of the u, d and s =
quarks Quark ~ Current mass/(MeV/c?) ~ Mesons . Baryons

d 99+ 18 _
5 199 + 33 483 538

The current masses are evaluated at a scale of 1 GeV/c2.

It is then a simple matter to calculate the masses of the decuplet members
using equation (10.39). The results, for constituent masses m, = my =
0.363 GeV/c?, m, = 0.538 GeV/c? and a’/m2 = 0.2 GeV/c?, are given in
table 10.5.

In spite of the simplicity of the model and the fact that effects such as
variation in |(0)|2, different binding energies and different kinetic energies
have beent neglected, the agreement between the predicted and observed -
masses is impressive. The effective or constituent masses of the light
quarks, as they appear in mesons and baryons, are summarized in table
10.6. That the effective masses in baryons appear to be about 50 MeV/c?
greater than in mesons may be attributable to small differences in binding
effects. .

The constituent masses of the quarks are quite distinct from the
‘current’ quark masses which appear in the QCD Lagrangian describing :
the interactions between quarks and gluons. These are quark masses free i
of the dynamical effects experienced in hadrons. The SU{3)¢1v0ur SYmmetry
of strong interactions arises because the current quark masses are small
compared with typical hadronic mass scales. To the extent that quark
masses may be neglected, the strong interactions are flavour independent:
the u, d, s,..., quarks experience the same strong interactions. The
symmetry breaking appears in the Lagrangian through terms of the
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form

L = myuii + mydd + mys§+ - - - ' (10.45)

where m, is the current mass of the quark with flavour f. In section 10.7
we shall discover that, in addition to the light quarks u, d and s, much
heavier quarks (charm c and bottom b) exist. The specific pattern of quark
masses appearing in nature is a mystery: the standard model of Glashow,
Weinberg and Salam (chapter 13) has nothing to say on this matter. In
the study of ‘ordinary’ hadrons the effect of ¢ and b quarks may safely
be neglected. Consistent values for the light quark masses have been
obtained from consideration of the pseudoscalar-meson masses, baryon
masses and the decay y — 3. For example, the symmetry-breaking term
in the Lagrangian (10.45) has been used to compute ratios of masses of
the pseudoscalar mesons:®

g Mmio — mi. + m2.

e 2 p) 2 7 18
m, 2mie + Mg+ — Migo — M5+
mS

m12(0+ mlz(q- - mi+

a 20,

my  mio —mE. + m2s

When combined with an estimate of the strange quark mass from the
A~-N mass difference, m, ~ 150 MeV/c?, one obtains m, ~ 4.2 MeV/c?,
and m,; ~ 7.5 MeV/c?. The currerit quark masses shown in table 10.6 are
taken from the ‘Review of particle properties’.”

We shall see in chapter 14 that the mass scale characteristic of the
strong interactions has a value Agcp ~ 0.2 GeV. The masses of the u and d
quarks are negligible in comparison and it is this which results in the
(accidental) isospin symmetry of the strong interactions discussed in
section 8.7. The mass of the s quark is comparable with Agcp and as a
result SU(3)g 00, 15 ONly an approximate symmetry.

10.6 Baryon magnetic moments

As a further example of the predictive power of the quark model we
-consider the magnetic dipole moments of the $* octet baryons. In this
ground-state octet the quarks have zero relative orbital angular momentum
so the net magnetic moment of a baryon is simply the vector sum of the
dipole moments of the constituent quarks, g = g, + g5 + p3. Itis a matter
of convention that when one speaks of the magnetic moment of a particle,
rather than the vector y, one means the maximum observable component
of the magnetic moment y,, which, for a positively charged particle,

corresponds to a spin orientation ‘along’ the positive z axis. For a
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Table
Comp
predic .
magne.
the 3+ -

point-like spin § particle of charge ¢ and mass m the magnetic moment i

u==. | 10.4
_u > (10.46)

Thus, for the structureless spin 3 quarks, the magnetic moments are

2 e 1 e 1l e
=-__ = —— e = ————, 10.47
Ho 3 2m, a 3 2m, # 3 2m, (1047)

In order to calculate the magnetic moments of the ground-state baryons
we need the quark wavefunctions for the baryons with spin component
s, = +73. In section 10.4 we saw that the ground-state baryons belong to
a 56 of SU(6) and that the totally symmetric octet arises from the linear
combination

VEHBug 2u) + Bu,s 24,1 (10.48)
The explicit wavefunction for a spin-up proton, for example, is
IPT> = "\/%(pMsts + pM,\XM.A\)' (10'49)

‘where py,, pu, are the flavour wavefunctions. The spin wavefunctions yy,
- and yy, have the same form as py, and py, with the replacement u - 1
and d — |. Explicitly '

11> = VHVH@d + dwyu — 2uud] ST + (DT — 2111]
+ Vild — dwul V(L - IN1]) (10.50)

or

1) = JfsQututd] — ujutd? — ufuld? + 2d{utut — dtutul
—dtulul + 2utd|ut — uldtut — uldlul). (10.51)

The proton magnetic moment is given by - 7 —

: 10.;
by = {pTlpty + py + psip?>

=3 X 15l 4p, + 4ty — dptg + (—pry + oy + 20) + (ta — i, + 1))
=34, — pa)- (10.52)

The magnetic moment of the neutron is obtained from (10.52) by
interchanging v and d, so

By = 3(dpg — 1), (10.53)

Similar calculations can be performed for the other octet members. Using
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Table 10.7 :

Comparison between the . Baryon Dipole moment Predicted/ Observed/uy

sredicted and observed .

nagnetic dipole moments of p ap, — pg) 279 3793

E 14 3 u d

he 37 baryons 0 gy — 11,) _186 _Yo13
A B —0.58 —0.613 + 0.004
= Hdu, — 1) 2.68 242 + 005
z° 32ty + 2y~ 1) 0.82 '
3 1du, — p) —-1.05 —1.157 + 0.025
B0 ap, — 1) —1.40 —1.250 + 0.014
=7 Ldp, — us) —047 —0.679 + 0.031

the constituent quark masses in table 10.6 we obtain the quark magnetic
moments, in nuclear magnetons, ‘

i, = 1.863
e = —0.931
u, = —0.582.

These values lead to the predicted moments for the baryons shown in
table 10.7. The agreement between the predicted and measured magnetic
moments is good for the p, n and A but less so for the other members of
the octet. This may not be too surprising in view of the crudeness of the
model. Here, we have dealt exclusively with the so-called valence quarks
which endow the hadrons with their static properties. In chapter 12 we
shall see that hadrons have much more complicated structures than
implied in this chapter: small contributions to the magnetic moments
should arise from the ‘sea’ of quark—antiquark pairs which exist in
baryons in addition to the valence guarks.

ro.y Heavy-meson spectroscopy

In addition to the three light quarks u, d and s, which we have discussed

~ so far in this chapter, two other much heavier quarks, charm ¢ and bottom
or beauty b, are known to exist. They were first discovered as *hidden’
flavours in the ¥ (psi) and Y (upsilon) mesons which are respectively c¢
and bb bound states. Although on vastly different energy scales, the
observed spectroscopic levels in the  and Y systems are very similar to
the observed level scheme in the e*e™ system (positronium). The close
agreement between theoretical predictions based on simple potential
models and experimental observations of the level spacings in the ¢ and
Y systems strongly. supports the validity of the quark model.




