
PHYSICS 221B – HOMEWORK SET 3

Due in class Tuesday, February 28, 2017.

Background: Halzen and Martin, Chapters 13 and 14; Burcham and Jobes,
Chapter 13. In addition, for further reading, an excellent reference on Gauge
Theory is Aitchison and Hey, Gauge Theories in Particle Physics, Adam
Hilger, 1982.

Problem 1

Show that the requirement that the solutions ψ(~x, t) of the Klein Gordon
Equation

dµdµψ(~x, t) +m2ψ(~x, t) = 0

be invariant under local phase transformations

ψ(~x, t) → exp[iqφ(~x, t)]ψ(~x, t),

where φ(~x, t) is any continuous function of spacetime, can be satisfied by
introducing an interaction term identical in form to the minimal electromag-
netic interaction, i.e., by imposing the requirement that

dµ
→ Dµ = dµ + iqAµ,

with Aµ transforming according to

Aµ
→ Aµ

− dµφ(~x, t).

Problem 2

Consider the electroweak Hamiltonian

HEW = iχγµDµχ

generated by the SU(2) ⊗ U(1) covariant derivative

Dµ = dµ +
ig

2
~τ · ~Wµ +

ig′

2
Y Bµ.

Show that if the physical neutral fields Aµ and Zµ are given by the linear
combinations of neutral gauge fields

Aµ = Bµ cos θW +W 3

µ sin θW

Zµ = −Bµ sin θW +W 3

µ cos θW ,

where
g sin θW = g′ cos θW = e,

then the Aµ interaction is precisely that of QED. Specifically, show that
Aµ couples to charged leptons with the appropriate strength, and conserves
parity. Hint: Calculate the appropriate term in the electroweak interaction
hamiltonian separately for the left- and right-handed charged lepton currents.
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Problem 3

The ‘left-right asymmetry’ ALR is defined as the asymmetry between the total
Z0 production cross section in e+e− annihilation for left- and right-handed
electron beam (and unpolarized positrons):

ALR =
σL − σR

σL + σR

.

Derive the Born-level relation between ALR and the square of the weak mixing
angle sin2 θW .

Problem 4

Consider the Born level process e+e− → Z0
→ ff , in the case that neither

beam is polarized. Let z ≡ cos θ, where θ is the angle between the incoming
electron beam and outgoing fermion (or incoming positron beam and outgo-
ing antifermion). Using angular momentum and parity violation arguments,
show that the ‘forward-backward asymmetry’ for this fermion species, defined
by the relation

A
f
FB(z) =

σf(z) − σf (−z)

σf(z) + σf(−z)

has the form

A
f
FB(z) = AeAf

2z

1 + z2
,

where Af is the quantitative extent of parity violation in the Z0-fermion
coupling:

Af =
(gf

L)2
− (gf

R)2

(gf
L)2 + (gf

R)2
.

Hint: Consider separately the angular distributions for the decay of mj = +1
and mj = −1 Z0 bosons, and then combine them with the appropriate
weights dicatated by parity violation in the Z0-electron coupling.
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Problem 5

Neutrino beams for DIS experiments are produced by allowing a roughly
mono-energetic pion beam to decay, and then absorbing all but the neutrinos
in an iron-impregnated earthen berm. What flavor of neutrinos are produced
in this process? Show that the spectrum of neutrino energies produced is flat
within kinematic limits. What are these limits for a 100 GeV pion beam?
Roughly how long would a pure iron berm have to be in order to yield a pure
neutrino beam at the far end? What would be the transverse dimension of
the neutrino detector that resides in the experimental hall at the end of the
berm?

Problem 6

Consider a neutrino beam that is pure νµ at t = 0. Show that the probability
that any given neutrino will be detected as a νe is given by

P (νµ → νe) =
1

2
sin2 2φ(1 − cos

m2
2 −m2

1

2p
t)

where φ is the mixing angle between the week and mass (m1, m2) eigenstates,
and p >> m1, m2 is the momentum of the neutrino beam.
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