PHYSICS 221B - HOMEWORK SET 3

Due in class Tuesday, February 28, 2017.
Background: Halzen and Martin, Chapters 13 and 14; Burcham and Jobes, Chapter 13. In addition, for further reading, an excellent reference on Gauge Theory is Aitchison and Hey, Gauge Theories in Particle Physics, Adam Hilger, 1982.

Problem 1

Show that the requirement that the solutions $\psi(\vec{x}, t)$ of the Klein Gordon Equation

$$
d^{\mu} d_{\mu} \psi(\vec{x}, t)+m^{2} \psi(\vec{x}, t)=0
$$

be invariant under local phase transformations

$$
\psi(\vec{x}, t) \rightarrow \exp [i q \phi(\vec{x}, t)] \psi(\vec{x}, t),
$$

where $\phi(\vec{x}, t)$ is any continuous function of spacetime, can be satisfied by introducing an interaction term identical in form to the minimal electromagnetic interaction, i.e., by imposing the requirement that

$$
d^{\mu} \rightarrow D^{\mu}=d^{\mu}+i q A^{\mu},
$$

with A^{μ} transforming according to

$$
A^{\mu} \rightarrow A^{\mu}-d^{\mu} \phi(\vec{x}, t) .
$$

Problem 2

Consider the electroweak Hamiltonian

$$
H_{E W}=i \bar{\chi} \gamma^{\mu} D_{\mu} \chi
$$

generated by the $S U(2) \otimes U(1)$ covariant derivative

$$
D_{\mu}=d_{\mu}+\frac{i g}{2} \vec{\tau} \cdot \vec{W}_{\mu}+\frac{i g^{\prime}}{2} Y B_{\mu} .
$$

Show that if the physical neutral fields A_{μ} and Z_{μ} are given by the linear combinations of neutral gauge fields

$$
\begin{gathered}
A_{\mu}=B_{\mu} \cos \theta_{W}+W_{\mu}^{3} \sin \theta_{W} \\
Z_{\mu}=-B_{\mu} \sin \theta_{W}+W_{\mu}^{3} \cos \theta_{W}
\end{gathered}
$$

where

$$
g \sin \theta_{W}=g^{\prime} \cos \theta_{W}=e,
$$

then the A_{μ} interaction is precisely that of QED. Specifically, show that A_{μ} couples to charged leptons with the appropriate strength, and conserves parity. Hint: Calculate the appropriate term in the electroweak interaction hamiltonian separately for the left- and right-handed charged lepton currents.

Problem 3

The 'left-right asymmetry' $A_{L R}$ is defined as the asymmetry between the total Z^{0} production cross section in $e^{+} e^{-}$annihilation for left- and right-handed electron beam (and unpolarized positrons):

$$
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}} .
$$

Derive the Born-level relation between $A_{L R}$ and the square of the weak mixing angle $\sin ^{2} \theta_{W}$.

Problem 4

Consider the Born level process $e^{+} e^{-} \rightarrow Z^{0} \rightarrow f \bar{f}$, in the case that neither beam is polarized. Let $z \equiv \cos \theta$, where θ is the angle between the incoming electron beam and outgoing fermion (or incoming positron beam and outgoing antifermion). Using angular momentum and parity violation arguments, show that the 'forward-backward asymmetry' for this fermion species, defined by the relation

$$
A_{F B}^{f}(z)=\frac{\sigma^{f}(z)-\sigma^{f}(-z)}{\sigma^{f}(z)+\sigma^{f}(-z)}
$$

has the form

$$
A_{F B}^{f}(z)=A_{e} A_{f} \frac{2 z}{1+z^{2}}
$$

where A_{f} is the quantitative extent of parity violation in the Z^{0}-fermion coupling:

$$
A_{f}=\frac{\left(g_{L}^{f}\right)^{2}-\left(g_{R}^{f}\right)^{2}}{\left(g_{L}^{f}\right)^{2}+\left(g_{R}^{f}\right)^{2}}
$$

Hint: Consider separately the angular distributions for the decay of $m_{j}=+1$ and $m_{j}=-1 Z^{0}$ bosons, and then combine them with the appropriate weights dicatated by parity violation in the Z^{0}-electron coupling.

Problem 5

Neutrino beams for DIS experiments are produced by allowing a roughly mono-energetic pion beam to decay, and then absorbing all but the neutrinos in an iron-impregnated earthen berm. What flavor of neutrinos are produced in this process? Show that the spectrum of neutrino energies produced is flat within kinematic limits. What are these limits for a 100 GeV pion beam? Roughly how long would a pure iron berm have to be in order to yield a pure neutrino beam at the far end? What would be the transverse dimension of the neutrino detector that resides in the experimental hall at the end of the berm?

Problem 6

Consider a neutrino beam that is pure ν_{μ} at $t=0$. Show that the probability that any given neutrino will be detected as a ν_{e} is given by

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\frac{1}{2} \sin ^{2} 2 \phi\left(1-\cos \frac{m_{2}^{2}-m_{1}^{2}}{2 p} t\right)
$$

where ϕ is the mixing angle between the week and mass $\left(m_{1}, m_{2}\right)$ eigenstates, and $p \gg m_{1}, m_{2}$ is the momentum of the neutrino beam.

