
Assignment 1
SOLUTIONS

1. 18k Gold
Part A
The overall density is the total mass divided by the total volume, so let’s think about the
volume fo 1 gram of 18k gold, which I’ll call V1g 18k.

The volume 1 gm of 18k gold is equal to the sum of the volume of each component of the
mixture (I’ll call them Vg, Vs, Vc for gold, silver and copper respectively) . You don’t know
those component volumes immediately, but you know their relative masses and their densities.

So looking at 1 gram of 18k gold...

ρ18 =
1

V1g 18k
=

1
Vg + Vs + Vc

ρgVg = 0.75 g =⇒ Vg = 0.75/19.3 = 0.0389 cm3

ρsVs = 0.16 g =⇒ Vs = 0.16/10.5 = 0.0152 cm3

ρcVc = 0.09 g =⇒ Vc = 0.09/8.90 = 0.0101 cm3

ρ18(Vg + Vs + Vc) = ρgVg + ρsVs + ρcVc = 1
ρ18(0.0389 + 0.0152 + 0.0101) = 1

ρ18 = 15.57 g cm−3

Part B
Same basic idea – you find the volume of each component of the mixture, except this time
you use that information to find the ”percent by volume” (what you’re given with to start is
the ”percent by mass”).

Looking at 1 gram of 14k gold...

ρgVg = 0.585 =⇒ Vg = 0.585/19.3 = 0.0303 cm3

ρsVs = 0.04 =⇒ Vs = 0.04/10.5 = 0.0038 cm3

ρcVc = 0.312 =⇒ Vc = 0.312/8.90 = 0.0351 cm3

ρzVz = 0.063 =⇒ Vz = 0.063/7.14 = 0.0088 cm3

Vtotal = Vg + Vs + Vc + Vz = 0.0780
Converting to percentages...

Gold: 38.8%
Silver: 4.87%

Copper: 45.0%
Zinc: 11.3%
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2. U-Tube
Part A
The right cap is 4 times larger than the left cap. Although one inch of sand on the right
cap is much heavier than one inch of sand on the left cap (4 times as heavy), the pressures
exerted by the sand are the same on both caps, since pressure is force per unit area. Since
the pressures exerted by the sand are equal, the pressures at the base of each arm due to the
water must be equal. This requires equal heights of water in the two arms.

Part B
The same mass (1 kg) is on each arm, so the force on each arm is the same, but since the area
of the right arm is larger, that force results in lower pressure than in the the left arm. Since
all parts of the liquid at the same depth are at the same pressure, the left cap must be lower
and the right cap higher after the weights are added.

Part C
To bring them back to equal height, you need to equalize the pressure on the two arms. The
weight on the larger arm must be 4× the weight on the smaller arm, because the larger arm
has 4× the area of the smaller arm (A = πr2). So since there’s 1 kg on the smaller arm, there
needs to be 4 kg on the larger arm.

Part D
Imagine an imaginary platform at the dotted line on right (large) side. Since its at the same
height as the small platform the pressure must be the same at the dotted line as at the base
of the small platform. Since the imaginary large platform has 4× the area of the smaller
platform, it is supporting 4× the weight (and 4× the mass). The total mass above it is 4 kg:
the 1 kg mass and 3 kg of water.

3. Problem 15.27
Since the problem asks for gauge pressure that means the pressure over and above atmospheric
pressure. Since the tube is open at the top, you know that the pressure at the top of the
liquid is atmospheric pressure, so the gauge pressure there is 0.

You can then work your way down the tube, using p = p0 + gρh (where h is the depth below
the surface) using p0 = 0 Pa.

To get an answer in Pascals (N/m2) you need to be a little careful about units, and work
consistently in MKS.

pbottom = 0 + gρoilhoil + gρwaterhwater

= 0 + (9.8)(1000× 0.82)(5.2/100) + (9.8)(1000× 1.0)(5.2/100)
= 927.5 ≈ 930 Pa
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4. Water Tank on Mars
Note: Different versions of the problem have different specific numbers: Here the height of
the water in the tank is h = 14.3m, the atmospheric pressure in the tank is p0 = 110 kPa, the
atmospheric pressure outside the tank is 89 kPa, the area of the tank floor is 2.5 m2, and the
acceleration due to gravity is gm = 3.71 N kg−1 m−1

Again, the pressure at the bottom of the tank is given by p = p0 + gmρh. Here we know
that the pressure at the surface of the water is p0 = 110 kPa, and g = 3.71 N kg−1 m−1, and
the density of water is 1000 kg/m3 just as on Earth.

p = p0 + gmρh

= 110, 000 + 3.71(1000)(14.3) = 163, 053Pa

This is the downward pressure on the bottom of the tank, and, since the area of the bottom
of the tank is 2.5 m2 it exerts a downward force of

Fdown = p×A = 163, 053× 2.5 = 407, 633 N.

But the air outside the tank is exerting an upward force...

Fup = prmair ×A = 89, 000× 2.5 = 222, 5001,N

The net force is the difference between these two forces, which (to 3 sig fig) is 185,000 N
downwards.

5. Problem 15.47
Again, exact variable values may vary...

Note: Since the fluid in this example is air, the pressure change due to changes in height is
negligible (gρ ∼ 9.8N/m3 ∼ 9.8 Pa/m, so changes in air pressure over even 10 meters would
tiny compared to 500 kPa.) This means you don’t have to worry about whether the ends of
the hydraulic line are at the same height.

This means that the pressure at the lift is the same as the pressure at the other end, i.e.,
500 kPa, and it exerts an upward force of

Pressure at one end is equal to the pressure at the other, and the force it exerts on the 44 cm
platform is

F = p×A = 500× 103 × π(0.222) = 76, 027 N

The mass it can support is given by F = mg =⇒ m = 7758 kg.

(I would quibble with the request to give your answer to 4 sig fig without specifying a value
of g more precisely than g = 9.8 N kg−1 m−1).
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6. Archimedes
Part A
The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. This
is true for every object submerged partially or completely in a fluid. The pressure from the
surrounding fluid was just enough to support the weight of the water before it was displaced,
this pressure produces the buoyancy force. If the buoyancy force is equal to or larger than
the gravitational force on the object, the object floats; if not it sinks. But either way the
buoyancy force is equal to the weight of the displaced fluid.

Part B
The magnitude of the buoyant force is equal to the weight of the amount of fluid that has the
same total volume as the object.
This is true for an object completely submerged in a fluid. For a floating object the buoyant
force equals the weight of the fluid displaced, and the volume of fluid displaced is smaller than
the volume of the object.

Part C
The magnitude of the buoyant force equals the weight of the object.
This is true for an object that floats. For an object that sinks, the buoyant force is smaller
than the weight of the object, and can’t support it.

Part D
The magnitude of the buoyant force is less than the weight of the object. This is true
for an object that sinks. The reason the object sinks is that the buoyant force cannot support
its weight.

Part E
The object would float submerged less deeply than in the first container because in a denser
liquid, a smaller volume of liquid needs to be displaced to give a buoyant force equal to the
object’s weight.

Part F
More than one of these outcomes is possible. In this case more liquid needs to be displaced
to give a buoyant force equal to the object’s weight. If that greater amount is still less than
the object’s volume, the object floats. If it’s more than the object’s volume, even when the
object is fully submerged the buoyant force won’t be large enough to support the object.

Part G
Both objects float, but B displaces more liquid, so its weight must be greater; since g doesn’t
vary, its mass also must be greater. Since both objects have the same size and shape, the one
with more mass (B) must be the more dense.

7. Buoyant Force Conceptual Question
Part A
The buoyant force on the block is W; since the block is floating in equilibrium, the buoyant
force is equal to the block’s weight.
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Part B
The density of the block is 0.5 g/cm3. The weight of the water displaced is equal to the weight
of the block, but the block has twice the volume, so it must have half the density of water.

Part C
The mass of the block is 20gm. When the block is fully submerged it’s displacing twice its
weight of water, and that amount is equal to the block plus the weights:

Mass of block + 20 gram weights = Weight of water displaced = 2(Mass of block)
Mblock + 20 g = 2Mblock

20 g = Mblock

Part D
The liquid is less dense. A larger volume of liquid has to be displaced for weight of the
displaced liquid to equal the weight of the block.

Part E
The buoyancy forces in the two cases have to be equal, so the mass of the displaced fluid in
the two cases has to be equal.

ρunknown ×
1
3
Vblock = ρwater ×

1
2
Vblock

ρunknown ×
1
3

= 1× 1
2

ρunknown =
3
2

8. Submerged block
We know that the total weight of the displaced liquid has to equal the weight of the cube.
Part of the displace liquid is oil, part is water.

Weight of displaced liquid = Weight of cube
Weight of displaced oil + Weight of displaced water = Weight of cube

gρ2L
2d + gρ3L

2(L− d) = gρ1L
3

ρ2d+ ρ3(L− d) = ρ1L

d(ρ2 − ρ3) = (ρ1 − ρ3)L

d =
(ρ1 − ρ3)
(ρ2 − ρ3)

L

9. Problem 15.50
Volume of water displace when empty beaker floats...

Vempty = πr2h = π(22)
(

10
3

)
= 41.89 cm3

The weight of this displaced water is equal to the weight of the beaker, so the mass of the
beaker is 41.89 g. The beaker will be fully submerged when it displaces 3 times that volume
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or 125.66 cm3, so you could put up to 83.77 g in the beaker; that allows for five 15 g balls but
not six.

10. Submerged ball
Tension + buoyancy = weight of ball. Buoyancy is gρfV , so...

T = g(mb − ρfV )

11. Bernoulli’s Equation
Part A
The pressure at point 2 is lower than the pressure at point 1. The tube is narrower at point 2,
so the flow speed there is faster. Since the tube is horizontal, pressure depends only on flow
speed, and Bernoulli’s equation shows that the faster the flow speed, the lower the pressure.

Part B
Physically, the pressure drop experienced by the fluid element between points 1 and 2 acts on
the fluid element as a net force that causes the fluid to increase in speed.

Part C
The pressure drop is larger than the pressure drop occurring in a purely horizontal flow. Both
the increase in height and the narrowing of the tube contribute to the pressure drop.

Part D
A greater amount of work is needed to balance the increase in potential energy from the elevation change.
Pressure drops occur where work is being done.

12. Blood Pressure
Part A
The flow velocity as it passes through the blockage is 5v0, since the passage is 1/5 its original
size.

Part B
Kinetic energy is proportional to v2 so when v increases by a factor of 5, kinetic energy
increases by a factor of 25.

Part C
Neglecting any changes in height, we know

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 .

We’ re looking for the pressure difference p2 − p1:

p2 − p1 =
1
2
ρ(v2

1 − v2
2)

=
1
2

(1050)([0.14]2 − [5× 0.14]2)

= −247 Pa
= −240 Pa (at level of approximation as used in the intro to the problem).
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Parts D,E
With a 90% blockage, the speed increases by a factor of 10, and the kinetic energy increases
by a factor of 100.

Part F
This is similar to C, but we’ll make the 1

2ρv
2
1 ≈ 10Pa approximation early on:

p2 − p1 =
1
2
ρ(v2

1 − v2
2)

=
1
2
ρ(v2

1 − [10v1]2)

= −99× 1
2
ρ(v2

1)

= −990 Pa

Water Flowing from a Tank
I did this problem first without making the “large tank, small hole” approximation...

Part A
The quantity dV/dt takes some thinking about, but you can see it both as the volume of
water flowing out of the spout, and as the surface of the water in the tank dropping.

dV

dt
= A1v1 = A3v3

Then look at Bernolli’s equation and start putting in things you know...

p1 + ρgh1 +
1
2
ρv2

1 = p3 + ρgh3 +
1
2
ρv2

3

p1 = p3 = patm =⇒ ρgh1 +
1
2
ρv2

1 = ρgh3 +
1
2
ρv2

3

v1 =
A3

A1
v3 =⇒ ρgh1 +

1
2
ρ
A2

3

A2
1

v2
3 = ρgh3 +

1
2
ρv2

3

2gh1 +
A2

3

A2
1

v2
3 = 2gh3 + v2

3

2g(h1 − h3) = v2
3

(
1− A2

3

A2
1

)

When you make the ”large tank, small hole” approximation (A3/A1 ≈ 0) this becomes...

2g(h1 − h3) = v2
3

156.8 = v2
3

v3 = 12.52 m/ sec
dV

dt
= 0.016v3 = 0.2 m3/ sec

If you assume that v1 is not zero the answer is larger by (9/8)1/2
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Part B
Bernoulli’s equation relates the pressure, flow velocity and height at different points in the
fluid:

p+
1
2
ρv2 + ρgy = constant

We know add these quantities at point 1: the pressure there is equal to atmospheric pressure,
so since we’re looking for gauge pressre we can say p1 = 0. We’ll continue to assume the flow
velocity there is zero, so v1 = 0.

Point 2 is 8 m lower, and the flow velocity is non-zero (though not as large as at point 3).
Before we can use Bernoulli’s equation, we need to find v2, which we can do because we know
how its related to dV/dt and v3 which we found in Part A (v3 = 12.52 m/ sec):

0.048v2 = 0.016v3 =⇒ v2 = 12.52/3 = 4.17

This gives:

p1 + gρy1 = p2 + gρy2 +
1
2
ρv2

2

0 + gρ(10) = p2 + gρ(2) +
1
2
ρv2

2

8gρ = p2 +
1
2
ρv2

2

8(9.8)(1000)− 0.5(1000)(4.17)2 = p2

69, 705 = p2

14. Problem 15.56
Part A.
The small tube is open to the atmosphere, so the fluid at the top of the tube must be at
atmospheric pressure. In a static system where no fluid is moving, pressure depends only on
height, so the fluid in the small tube must reach the same height as the fluid in the other
open tube: h2 = h1,

Part B.
First we will find the pressure (call it p2) at the bottom of the small tube (h = 0). Once we
know this we, we can find the h2 by knowing that gρh2 = p2 − patm

To find p2, compare the large upper tube at h1 to the smaller tube at h = 0, and use the fact
that we know the speed of the fluid in the lower part of the tube must be twice the speed
of the fluid in the large part, because the lower tube has half the cross-sectional area of the
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upper tube.

patm + gρh1 +
1
2
ρv2 = p2 +

1
2
ρ(2v)2

gρh1 +
1
2
ρv2 − 1

2
ρ(2v)2 = p2 − patm

gρh1 +
1
2
ρ(v2 − 4v2

1) = p2 − patm

gρh1 −
3
2
ρv2 = p2 − patm

gρh1 −
3
2
ρv2 = gρh2

gh1 − gh2 =
3
2
v2

h2 − h1 = − 3
2g
v2

h2 = h1 −
3
2g
v2


