
Physics 6B-Winter 2010 Assignment 3 

SOLUTIONS 

 

Ideal Gas Law 

Part A 

 

The ideal gas law	�� � ���		gives the relationship between the pressure and volume of a gas to its temperature 

and mass of an ideal gas.    � � ��	

��	, � � 
����	, � � �	��	�����		��	������	&	� � ��. ��	���	
	���

�		 � � ���
	�
��	��
	 ��
���� � 8.3145	&/����. (� 

 

We can rearrange the equation to give  
)*+, � � 

Since R is a constant, then 
)-*-+-,- � ).*.+.,. . We can now relate changes in the same gas to each other 

 

In this case parameters unchanged: Volume, V ,(rigid container), Number of moles, n ,(enclosed gas) 

Temperature has clearly risen so the unknown parameter here is pressure. 

 ∴ 	�0�0 � �1�1 		→ 		 �1 � �1�0 �0 		→ 		 �1 � 40 4 27320 4 273�0 

 

Part B 

 

Pressure = 1 atm , Temperature = 20 
0
C = 20 + 273 

0
K,  Volume = 22.4 L 

R = 0.08206 L atm K
-1

 mol
-1

 

 � � ���� � 	 1 7 22.40.08206�20 4 273� � 0.932	��� 
 

Part C 

 

Similar to Part A. Here, we are asked to assume no gas escapes and the temperature remains constant. We are also 

given the initial and final pressure as well as the initial temperature 

 

n1 = n2 and T1 = T2,    P1 = 1.5x10
6
 Pa,  P2 = 0.95x10

6
 Pa ,  V1 = 0.025 m

3
 

 :0�0�0�0 � :1�1�1�1 		→ 		 :0�0 �	:1�1 	→ 		 �1 � :0:1 �0 � 1.50.95 �0.025	m<� � 3.95 7 10=1m< 

 

Part D 

 

Similar to Parts A and C. Volume and number of moles are held constant 

 ∴ 	�0�0 � �1�1 		→ 		 �1 � :1:0 �0 		→ 		 �1 � 0.951.5 �200 4 273� � 299.6	 (> � 26.6 ?>  

 

 

Dust Equipartitions 

Part A 

 

Given: kB = 1.38 x 10
-23

 J/K  ,    T = 290 K 

 



The Equipartition Theorem states that, for a gas at temperature   T:  
01�〈
A1〉 � 01�〈
C1〉 � 01�〈
D1〉 � 01EF� 

Also we have the average velocity squared of the dust particles:    〈
1〉 � 〈
A1〉 4 〈
C1〉 4 〈
D1〉 
Thus the mean translational kinetic energy, 

                                  ( � 01�〈
1〉 � 01�G<HI,J K � <HI,1 � <L0.<M70>N.OP�1Q>�1 � 6 7 10=10	& 

 

Part B 

 

The root-mean-squared velocity of a particle is the square root of the average velocity squared of a particle. 

 


RJS � T〈
1〉 � U3EF��  

 

The mass is not given directly but can be expressed in terms of density (ρ) and volume of the dust particle. 

 

Assuming each particle to be spheres we have:   � � V GW<X�<K � W< VX GY1K< 

 

Substituting this into the rms velocity equation above give: 


RJS � Z 3EF�43VX G[2K< 

 

Part C 

 

Given: d=5µm,  ρ=2000 kg/m
3
 , mass (m) = 1.31 x 10

-12
 kg 

Substitute into the either vrms equation above. Only mass or d and ρ are required 

 

Using mass (m):       
RJS � \<HI,J � \<�0.<M70>N.O��1Q>�0.<070>N-. � 3 7 10=W	�/
	 � 		0.3	��/
 

 

 

Problem 17.41 

 

This problem requires the use of the ideal gas law equation :� � ���		and the relationship 
]-*-+-,- � ].*.+.,. 

 

Part A 

 

The flask is closed (n remains constant) then immersed in boiling water (100 
0
C). We assume here that the flask 

cannot expand and hence the volume is constant. 	∴ :0�0 � :1�1 	→ 		 :1 � �1�0 :0 

 

Given: P1 = 1 atm, T1 = 20 
0
C = 293 K, T2 = 100 

0
C = 373 K                Note: above equation uses temperature in Kelvin 

 :1 � 373293 �1	���� � 1.27	��� 

 

Part B 

 



At thermodynamic equilibrium with the water, the flask is opened. When air is allowed to escape, the number of 

molecules inside has now changed. Also, the pressure inside the flask equalizes with the atmospheric pressure. The 

volume (v) remains unchanged from closed to open state. 

 ^
���	� � :��� ,			_		`�
		��. ��	���	
		
 ��		 � 	�a+abacd e �f)g+ � :0�0��0 e :0�0��0  

 

Initial moles in the enclosed flask are the same before and after heating: �a+abacd � �0	cbJ��Wh��>.>M1>i	j	klm	nN-	mopN-��1Q<	q� 
 ∴ ��.���	
		
 ��		 � �1	�����4r��0.08206	L	atm	K=0	mol=0��293	(�	e	 �1	�����4r��0.08206	L	atm	K=0	mol=0��373	(� � 0.0357 

 

Part C 

 

After allowing the pressures to equalize with atmospheric pressure, the flask is then closed and cooled back to 20 
0
C. Thus P1 = 1 atm and the number of moles in the container remains unchanged during cooling. 

 ^
��� :0�0�0�0 � :1�1�1�1 		���	�`	�	_��`	�0 � �1	��[	�0 � �1 :0�0 � :1�1 	→ 		 :1 � �1�0 :0 	� 	 293373 �1	���� � 	0.786	��� 

 

 

Problem 17.48 

Part A 

 

Compare the total heat required to raise the temperature of 50g of -10 
0
C ice to its melting temperature (0 

0
C) and 

melt it with the amount of heat taken away from 1kg of water to cool it from 15 
0
C to 0 

0
C 

 

Specific heat capacity: cice = 2.108 kJ kg
-1

 K
-1

,  cwater = 4.187 kJ kg
-1

 K
-1

 

Latent heat of fusion: Lice = 330 kJ kg
-1

 

 

Heat needed to melt ice, Hice = (cice x 0.05 kg x 10 K) + (Lice x 0.05 kg) = 17554 J 

Heat removed to cool water, Hwater = (cwater x 1 kg x 15) = 62805 J 

 

More heat is required to cool the water to 0 
0
C than needed to melt the ice. 

 

Part B 

 

To find the final temperature, the added ice must be in thermal equilibrium with the water. 

 

Energy to (Raise Tice + Melt ice + Raise T of 50g water) = Energy removed to cool 1 kg of water 

 

Hice + (cwater x 0.05 kg x (Tfinal – 0)) = (cwater x 1 kg x (15-Tfinal)) 

cwater(1.05 x Tfinal – 1 x 15) = - 17554 J �ya+cd � z15 e 175544187 { | 1.05 � 	10.29	} 

 

 

Problem 17.57 

 

Rate of energy delivered by the Microwave = 500 W = 500 J/s,   



It is assumed that the amount of heat received by the water in 20 min will cause some to vaporize (we can check 

this by comparing the heat output of the microwave with the amount of heat needed to raise water to 100 
0
C). In 

order to do that, water has to be raised to its boiling temperature (100 
0
C) and then undergo a phase change to 

steam. 

 

Latent heat of vaporization of water Lsteam = 2260 kJ/kg  

Specific heat capacity of water, cwater = 4.187 kJ kg
-1

 K
-1

 

 

(cwater x mwater x (100-Tini)) + Lsteam x mvapourized = Energy delivered by microwave in 20 mins 

(cwater x mwater x (100-Tini)) + Lsteam x mvapourized = (500 J/s)(20 x 60 s) 

 �~c)f�RaDgY � 600000 e L �cbgR 7��cbgR 7 �100 e �a+a�PrSbgcJ  

 

Amount of water left = mwater - mvapourized 

 

 

Problem 17.65 

 

Thermal resistance of refrigerator walls Rwalls = 0.12 K/W 

Interior temperature of fridge Tint = 0 
0
C 

Exterior room temperature Text = 20 
0
C  

Latent heat of fusion (to change water to ice at 0 
0
C): Lice = 330 kJ kg

-1
 

 

To calculate how long the ice block will last, first determine the rate of heat transferred into the fridge 

 � � �gAb e �a+b��cddS � 200.12� � 166.67	&/
 

 

Since the ice is already at 0 
0
C, no additional energy is required to cool it and all the heat transferred is used for 

melting the ice. 

 ∴ 	�a�g � �����	`	��	�		[	[	��	�	��	� 	���		��	`	��	����
�	��	[ � ra�g 7 �a�g� � �330 7 10<	&/E�� 7 �a�g166.67	&/
  

 

 

Coefficient of Expansion Conceptual Question 

Part A 

 

The thermometer markings are calibrated to the volume expansion of mercury with temperature. Alcohol has a 

volume expansion 5.6 times greater than mercury. 

 

Volume of the liquid in the tube = πr
2
h            where r = radius of tube and h = height of the liquid column 

 

For the same temperature change and the same tube radius, alcohol level in the tube changes more than mercury. 

Hence, given that the quantity of alcohol in the thermometer accurately records 0 
0
C, at 20 

0
C, alcohol would have 

undergone a greater expansion and reached a higher level on the tube compared to mercury. 

 

Part B 

 

Similar to Part A, alcohol also shrinks more than mercury when cooled and thus would records a lower 

temperature with the thermometer at -10 
0
C. 



 

Part C 

 

Change in volume, ∆�	 � 	X�1∆`	 � 	X GY1K1 ∆` 

 

To maintain the same spacing between temperature markings, ∆h remains unchanged ∆��d�f�fd∆�JgR��RC � 5.6 � X G[cd�f�fd2 K1 ∆`
X z[JgR��RC2 {1 ∆` 		→ 	 [cd�f�fd[JgR��RC � √5.6	_�[	� 

 

 

Problem 17.34 

 

Coefficient of Liner expansion for Pyrex glass = 32.5 x 10
-7

 /
0
C �����
���	��	[���	�	�	 � 	 �32.5 7 10=���∆����������	[���	�	�� � �32.5 7 10=���85 e 20��1 ��� 0.00021	 � 

Final diameter = dinitial + expansion = 1cm + 0.00021 cm = 1.00021 cm 

 

 

Problem 17.71 

Part A 

 

Coefficient of linear expansion for brass = 19 x 10
-6

 /
0
C 

Initial brass pendulum length at 20 
0
C = 20 cm 

Thus at 18 
0
C, pendulum length = Linitial – Shrinkage in length = 20 – (19x10

-6
)(20-18)(20) = 19.99924 cm 

 

To find the error induced into the clock due to a shrinkage of the length, we must find the difference in the swing 

period between the 2 different pendulum lengths. Let T20 = Period at 20 
0
C and T18 = Period at 18 

0
C 

 

�	���[	���	��	�	�[����	 � 	2XUr	���`���
��� 

��. ��	�	���[
	���	��		����	��	1	���	��	[	
	���	 � 	 60
�1> e �0M 	� 	 60
�2X\0.29.8� e �\0.19999249.8 � � 3518128 

 

Length of time for the error to develop = 3518128 x T18 = 3157805 s = 36.54 days 

 

Part B 

 

A shorter pendulum results in a shorter period as seen in T20 and T18 from part A. Hence the faster swing will result 

in the clock hands moving faster. 

 

 

The First Law of Thermodynamics Reviewed 

 

1
st

 law of thermodynamics:  dQ = dW + dU 

dQ = heat supplied to the system 

dW = work done by the system 

dU = change in internal energy of the system 

 



Part A 

 

Looking at the above equation, if energy (heat in this case) is provided to the system, it can be stored in the system 

or applied by the system to perform some work. Hence all the forms of energy must balance out and are 

conserved. 

 

Part B-D: see definitions above 

 

Part E:  

 

If dQ > 0 and dU = 0. In order for the equation to balance, then dW > 0 

Since dW is defined as the work done by the system, it must do positive work on the outside world 

 

 

The First Law of Thermodynamics Derived 

Part A 

 

1
st

 law of thermodynamics:  dQ = dW + dU 

dQ = heat supplied to the system 

dW = work done by the system 

dU = change in internal energy of the system 

 

The choices are a combination of adding or removing heat from a system and the compression or expansion of a 

system. 

 

With the above definition, when we add heat to the system, dQ is positive. Conversely dQ is negative when heat is 

removed from the system. 

 

When we compress a system, we expend energy in act of doing so and this energy gets stored in the system or 

gets converted to heat or both. Examples would be compressing a spring or a pocket of air. Since dW is defined as 

work done by the system, when work is done on the system, such as compressing it, dW is negative and positive 

when the system expands. 

 

Part B 

 

Conservation of energy states that energy cannot be created or destroyed. If we add heat to a system (dQ > 0), 

then this energy is either stored in the system (dU >0) or used by the system to carry out some other form or work 

(dW > 0). Hence we get: 

 

dQ = dW + dU 

 

 

Understanding pV Diagrams 

 

A pV diagram relates the pressure of a fixed quantity of ideal gas to its volume. From the ideal gas law equation, 

pV=nRT, with quantity held constant, the equation can be rearranged to give: 

 ��� � �� �  ��
���� 

 

A single parameter may not be varied independently from the others. 

 



pV-diagrams can be used to calculate work done as given by the area under the graph corresponding to that 

process on the pV-diagram. 

 

Part A 

Work done moving from point 1 to 2: �0→1 � � 7 ∆� � �3�>��3�> e �>� � 6�>�> 

 

Part B �1→0 � � 7 ∆� � �3�>���> e 3�>� � e6�>�> 

 

Part C ��→i � � 7 ∆� � ��>��3�> e �>� � 2�>�> 

 

Part D 

Can be done 2 ways �0→<→i � ��	�	��	��	�����[ � 
��	��	//	
�[	
2 7 `	��`� � z�> 4 3�>2 { �2�>� � 4�>�> 

 

Or simply count the number of squares under the curve since we know each square is p0V0. 

 

Part E 

 

Work done going from 2 → 6 

Since there is no change in volume, there is no work being done by or on the system. Note that this does not mean 

that energy is not conserved. The system’s internal energy can still be changed. 

 

Part F 

 

Work done going from 1 → 2 → 6 → 5 → 1 can be approached in 2 ways. 

 

1
st

 way: �0→1→i→�→0 � �0→1 4�1→i 4�i→� 4��→0 � �0→1 4 0 e��→i 4 0 � 6�>�> e 2�>�> � 4�>�> 

 �i→� � e��→i	� ��������	����
	�	��[	�� �1→i � ��→0 � 0	�	 ��
		�`	�		�
	��	
����		 `���	 

 

2
nd

 way: 

 

Count the area bounded by the path 1 → 2 → 6 → 5 → 1. This turns out to be 4 squares and hence 4p0V0. 

 

Part G 

 

Work done going from 1 → 2 → 6 → 3 → 1 can again be done both ways. 

 �0→1→i→<→0 � �0→1 4�1→i 4�i→<→0 � �0→1 4 0 e�0→<→i � 6�>�> e 4�>�> � 2�>�> 

 

Or 

 

Counting the number of squares enclosed: 2 squares = 2 p0V0. 

 

 

Isothermal Expansion: Work and Heat 

 



An isothermal process is one where the temperature of the system remains unchanged. Applied to a fixed quantity 

of ideal gas results in �� � ���	 → �� �  ��
����. 

 

Part A 

 

Of the 4 curves, C is the only one where the product of the ratios before and after the change remains constant. 

 

Product before = 1x1 =1  

Product after = 0.25x4 = 1 

 

Part B 

 

The total internal energy of an ideal gas is equal to the kinetic energy of all its individual gas atoms 

 

From the equipartition theorem we have:  

 12�〈
A1〉 � 12�〈
C1〉 � 12�〈
D1〉 � 12 EF�														_`	�		EF � ��������	 ��
����	��[	� � �	��	�����	 

 

Average velocity squared of each gas atom:    〈
1〉 � 〈
A1〉 4 〈
C1〉 4 〈
D1〉 
 

Thus for N atoms, the kinetic energy, ( � � G01�〈
1〉K � �1 �G<HI,J K � <�HI,1  

 

Since there is no change in temperature, the internal energy of the gas remains unchanged. 

 

Part C 

 

Isothermal expansion: temperature is constant hence �� � ���	 → �� �  ��
���� 

Since the gas is expanding (V increasing), thus pressure has to decrease correspondingly to maintain the constant. 

 

Part D 

 

Work done by the gas, W = area under the curve of a pV-diagram. 

Thus when the gas expands from V0 to RVV0: 

 � � � ���*�
*� [� 

 

To find pressure as a function of volume: �� �  ��
����		 → 	�0�0 � �1�1 	→ 	 �1 � �0 �0�1 

���� � �> �>�  

Substituting into work done: 

 � � �>�> � 1���*�
*� [� � �>�>�����*���*� � �>�>����*�> e ���>� � �>�> ln z�*�>�> { � �>�>ln��*� 

 

Part E 

 

From the 1
st

 law of thermodynamics: dQ = dW + dU 

 



For an isothermal process, internal energy (dU) = 0        (from part B) 

Hence, [� � [� � �>�>ln��*� 

 

Part F 

 

For an isothermal expansion, dU = 0 giving dQ=dW, hence heat is completely converted into work 

 

We can calculate work done by finding the area under a curve of a pV-diagram. Hence the work done in an isobaric 

process (constant pressure) is the area under the curve O-A. Comparing this with the area under the isothermal 

expansion curve O-C, it is immediately clear that the isobaric expansion does more work. 


