
Physics 6B - Winter 2011
Homework 4 Solutions

Expansion and Compression of a Gas

Part A

In an adiabatic process, there is no heat transferred to or from the system i.e. dQ = 0. The
first law of thermodynamics then reduces to

dQ = dW + dU ⇒ dU = −dW (1)

where dW is the amount of work done by the gas and dU is the change in internal energy.
Since the gas is expanding, the work being done by the gas is positive. Eqn. (1) then implies
that the change in internal energy of the system must be negative, that is, the internal energy
is decreasing. The only true statements are then:

• The work done by the gas is positive, and no heat exchange occurs.

• The internal energy of the system decreases.

Part B

Since the system undergoes a cyclic process, i.e. a process in which the initial and final states
are the same, the change in internal energy must be zero. This allows for the reduction of
the first law of thermodynamics to

dQ = dW. (2)

The only true statements are then

• The total change in internal energy of the system after the entire process of expansion
and compression must be zero.

• The total work done by the system must equal the amount of heat exchanged during
the entire process of expansion and compression.

Isobaric, Isochoric, Isothermal and Adiabatic Processes

Part A

The equation of state of an ideal gas relates its pressure, p and the volume, V , to its
temperature, T as

pV = nRT ⇒ T = cpV (3)

where c = 1/nR is a constant. From the graph, the temperature of the system at states A
and B is

T = 4c K

which means the process is isothermal. In accordance with the Equipartition Theorem, the
internal energy of the system is proportional to the temperature. It must be the case that

• The states A and B have the same internal energy, so ∆U is zero.
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Part B

As the gas expands, the internal energy of the system begins to decrease. It was found in
part A, however, that the internal energy of the system must remain constant through an
isothermal process. This can only occur if the amount of energy lost while the gas expands
is restored to the system in the form of heat. It is then the case that

• W provides energy output, while Q provides energy input. They are equal in magni-
tude.

Part C

The work done by an ideal gas is defined to be

W =
∫
pdV. (4)

Since the process is isochoric, dV = 0, which implies that the work done by the gas is zero.
The first law of thermodynamics then reduces to

dU = dQ. (5)

Because the temperature of the system decreases from TA = 4c K to TB = c K, the internal
energy of the system must decrease. This implies that the system is losing energy in the
form of heat. It is then the case that

• Q provides energy output, while W equals to zero.

Part D

It was found in Part C, that in going from state A to state D the internal energy of the
system decreases. However, in going from state A to state B, the internal energy of the
system must remain constant. It must be the case that during the isobaric portion of the
process, the system must gain internal energy. Since the system is expanding during the
isobaric process, the internal energy of the system will be further reduced due to the work
done by the gas. The system must then absorb enough energy in the form of heat that will
compensate for the energy lost due to the expansion of the gas and for that lost during the
isochoric portion of the process. Q and W are then related as

• W provides energy output, while Q provides energy input; Q is larger.

Part E

As was discussed above, no work is done by the gas during an isochoric process. Since the
temperature increases in going from state E to B, the internal energy must also increase.
Eqn. (5) then implies that Q must provide an energy input.
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Part F

Using the equation of state for an ideal gas, it can be seen that the internal energy of the
system increases in going from state A to state F i.e. pAVA < pFVF → TA < TF . Since the
gas is expanding in going from A to F, the first law suggest that the internal energy of the
system is being decreased. It is then the case that in order to have a net increase in the
internal energy the amount of heat energy provided to the system must exceed the amount
of energy lost due to work.

Simple Ways of Expanding

Part A

Since the curve OA is a horizontal line, this implies that the pressure is constant meaning
that the process is isobaric.

Part B

Using the ideal gas law, a relationship between p and V is found to be

p =
nRT

V
.

From the graph,it follows that the pressure is inversely proportional to the volume of the gas,
e.g. p/p0 = 1/4 when V/V0 = 4. It can be seen from the equation above that this can only
be true if the temperature of the gas remains constant. The curve OC is then representative
of a isothermal process.

Part C

The pressure of the system in state B is less than the pressure of the system in state O.

Part D

The work done by a system during a process is equal to the area under the curve describing
the process on a pV diagram. The graph then reveals that the work done by the system is
greater than zero.

Part E

Even though the equation of state will not reveal the exact temperature of a system in a
given state in this case, it can still provide a value that is proportional to the temperature.
At state O, the temperature is proportional to

TO ∝
p

p0
|O
V

V0
|O = 1

while the temperature at state B is
TB ∝ 2.5.
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The temperature of the system in state B is then greater than the temperature of system
in state O.

Part F

It is known that the internal energy of a system is proportional to the temperature of the
system. It follows that the internal energy of the system in state B is greater than the
internal energy of the system in state O.

Piston in Water Bath Conceptual Work-Energy Problem

Part A

Because the piston is held in place throughout the process, the volume of the system remains
unchanged. It follows from eqn. (4) that the work done by the gas is equal to zero since
dV = 0. Furthermore, because the piston is held above a flame, energy is being transferred
into the system implying that the heat transferred is positive. Finally, the first law of
thermodynamics with dW = 0 yields

dU = dQ. (6)

The change in internal energy is then positive since the heat transferred is positive. This
makes sense because as you heat the system the temperature of the system will rise in turn
raising the internal energy (U ∝ T ). (0, +, +) .

Part B

If the compression of the piston occurs very slowly, the system will continue to remain in
thermal equilibrium with the water bath throughout the process. Since the temperature of
the system does not change, the internal energy of the system will also remained unchanged.
Furthermore, since the gas is being compressed, i.e. work is being done on the gas, the work
is negative. It follows from the first law that the amount of heat transferred to the system
must be negative. (-, -, 0)

Part C

Once again, because the piston is held in place, the work done by the gas is zero. Furthermore,
since the piston is plunged into cold water, energy will leave the system in the form of heat
in accordance with the zeroth law of thermodynamics. It follows from eqn. (6) that the
change in the internal energy of the system must be negative. (0, -, -)

Part D

Because the piston is wrapped in insulation, no heat can enter or exit the system, i.e. dQ = 0.
Furthermore, as the piston is pulled up, the gas will expand so that the work done by the
gas is positive. It then follows from the first law of thermodynamics in the form of eqn. (1)
that the change in internal energy must be negative. (+, 0, -)
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pV Diagram for a Piston

Part A

The piston being locked in place implies that the process will be isochoric and will be
described by a vertical line on the pV diagram. Furthermore, the piston is being held above
a hot flame meaning that energy is being transferred into the system in the form of heat.
It can be seen from eqn. (6) that this will raise the internal energy of the system in turn
increasing the temperature. The only point on the pV diagram that satisfies these two
conditions is point 1.

Part B

Since the piston in contact with a water bath, as the piston is slowly compressed it will
remain in thermal equilibrium with the water bath. This implies that the temperature of
the gas will remain constant throughout the process. Furthermore, since the piston is being
compressed, the volume of the system will decreased. The only point on the pV diagram
that satisfies these two conditions is point 7.

Part C

This is similar to Part A, except that heat is now leaving the system. The point on the pV
diagram which satisfies these conditions is then point 5.

Part D

Now that the piston has been isolated, then no heat energy is allowed to enter or exit the
system. As the piston is pulled out of the container, the gas will expand decreasing the
internal energy of the system (see eqn. (1) ). In turn, the temperature of the system will
decrease. The point on the pV diagram which satisfies these conditions is then point 4.

Two Closed Thermodynamic Cycles Conceptual Questions

Part A

Cycle 1 is a cyclic cycle so that the change in the internal energy of the gas is zero.

Part B

It can be seen from the pV diagram that 1 and 3 are isochoric processes meaning that their
contribution to the total work is zero. If Cycle 1 is traversed clockwise, the gas does positive
work by expanding during portion 2 and negative work when it is compressed during portion
4. Since the amount of work done during portion 2 is greater than that done during portion
4, the total work done must be positive.
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Part C

As mentioned in Part A, Cycle 1 is a cyclic process which implies that dU = 0. The first law
of thermodynamics then suggest that the amount of heat transferred to the gas must equal
the amount of work done by the gas. Since the amount of work done by the gas was found
to be positive in Part B, the amount of heat transferred must also be positive.

Part D

When Cycle 1 is traversed counterclockwise, the gas does positive work by expanding during
portion 4 and negative work when it is compressed during portion 2. Once again, since
the amount of work done during portion 2 is greater than the amount of work done during
portion 4, the total work done by traversing Cycle 1 counterclockwise will be negative. It
immediately follows that Wclockwise > Wcouterclockwise.

Part E

Using the same argument as in Part C, Qclockwise > Qcounterclockwise.

Part F

The net work done by a gas during a cyclic cycle is equal to the area enclosed by the lines
describing the cycle on a pV diagram. Since the areas of Cycle 1 and Cycle 2 are the same,
and the cycles are traversed clockwise in both cases, the work done by the gas in both cases
is the same. Wclockwise, Cycle 1 = Wclockwise, Cycle 2

Part G

Following the same argument made in Part C and Part F, the heat transferred in both
processes is equal. Qclockwise, Cycle 1 = Qclockwise, Cycle 2

A Flexible Ballon

Part A

Initially the gas expands isobarically meaning that the pressure of the gas remains constant
throughout the process. In order for the pressure to remain constant, however, heat must flow
into the system, otherwise the equation of state dictates that the pressure would decrease
with increasing volume. The gas then expands adiabatically which, by definition, means
that no heat it added or removed from the system. In order to calculate the amount of heat
supplied to the system, it is only necessary to consider the first process.

Under constant pressure, the heat supplied to the system is given by

Q = nCp(Tf − Ti).

It is then necessary to know the final temperature of the system once the expansion has
taken place. This can be found by using the equation of state and noting that p/nR will
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remain constant throughout the process. This leads to

Ti
Vi

=
p

nR
= constant =

Tf
Vf

Tf =
Vf
Vi
Ti

Since Vf = 2Vi then Tf = 2Ti. The amount of heat supplied to the system is then

Q = nCp(2Ti − Ti) = nCpTi.

With n = .400 mol, Cp = 33.26J/mol ·K and Ti = 303K

Q = 4031.112 J.

Part B

It is known that the internal energy of the system is proportional to its temperature. Since
the initial and final temperatures of the system remain unchanged, the change in the internal
energy must also be zero

∆U = 0

Part C

It was found in part B that dU = 0 which simplifies the first law of thermodynamics to

dQ = dW.

Since the amount of heat supplied to the system is equal to the amount of work done by the
gas it follows from the solution to part A that

W = 4031.112 J.

Part D

Initially, the gas expands isobarically until its initial volume, Vi = .00675 m3, has doubled.
Then it expands adiabatically until it reaches its final volume Vf . It must be noted that
the adiabatic process brings the gas back to its original temperature meaning that Tf = Ti.
Recall that for an adiabatic expansion the product TV γ−1 remains constant. As a result,
this allows the volume and pressure of a system once it has expanded adiabatically to be
related to its initial volume and pressure as

T1V
γ−1
1 = T2V

γ−1
2 ⇒ V2 =

(
T1
T2

) 1
γ−1

V1.

Taking V1 and T1 to be the volume and temperature once the gas has expanded isobarically,
and T2 to be the final temperature of the gas, the final volume of the gas is then

Vf = 2
1

γ−1 (2Vi) = .108 m3

where the value γ = 4/3 was used.
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An Expanding Monatomic Gas

As the gas expands, the amount of heat that is absorbed by the system is equal to dQ = 1160
J while the amount of work that is done by the gas is dW = 2160 J. The first law of
thermodynamics can then be used to relate these quantities to the change in the internal
energy of the system as

dQ = dU + dW ⇒ dU = Uf − Ui = dQ− dW. (7)

The Equipartition Theorem states that for an ideal gas with three degrees of freedom the
internal energy is given by

U =
3

2
nRT (8)

where n is the number of moles, R is the ideal gas constant and T is the temperature of the
system. Initially, the system is at a temperature Ti = 400.15 K so the internal energy is then

Ui =
3

2
nRTi.

Similarly, the internal energy of the system once the gas has finished expanding is

Uf =
3

2
nRTf .

Substituting Ui and Uf into eqn. (7), the final temperature of the gas is

3

2
nRTf −

3

2
nRTi = dQ− dW

Tf = Ti +
2

3nR
(dQ− dW )

= 384.2637 K = 111.1137o C

A Carnot Refrigerator

Part A

The Carnot cycle is a cyclic process which means that the internal energy of the system
remains unchanged after the system has undergone the full cycle. Eqn. (3) then states that
the amount of work done by the gas after completing the cycle will be equal to the net energy
transferred into the system

W = |Qh| − |Qc| .
Using the relation

|Qc|
|Qh|

=
Tc
Th
,

and the expression for the work done by the gas, the coefficient of performance can be
rewritten as

K =
|Qc|

|Qh| − |Qc|
=

1
|Qh|
|Qc| − 1
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=
1

Th
Tc
− 1

=
Tc

Th − Tc

Part B

The helium inside the refrigerator is absorbing 2.00 J of energy per hour. If the helium is
to remain at constant temperature, the same amount of heat must be removed from the
system, i.e. Qc = 2.00 J. The coefficient of performance can then be used to find the work
required to accomplish this task. Since the work is being supplied by the electrical energy,
it must be the case that W = E. Knowing that the temperature of the heat reservoir is at
Th = 294 K and the temperature of the cold reservoir is Tc = 4 K, the energy per hour that
must be used to maintain the helium at constant temperature is

K =
Qc

E
⇒ E =

Qc

Tc
(Th − Tc) = 145 J

Part C

Following a similar procedure as in Part B with Qc = 5.00 J, Tc = 280 K and Th = 300 K,
the amount of energy that is required is

K =
Qc

E
⇒ E =

Qc

Tc
(Th − Tc) = .357 J

Melting Ice with a Carnot Engine

Let Qh be the amount of energy absorbed by the gas from the hot reservoir and Qc the
amount of energy expelled by the gas to the cold reservoir. The work done by the engine is
then

W = Qh −Qc. (9)

It is known that in the allotted time, the heat expelled from the engine was enough to melt
a mass of ice equal to mice = 3.65× 10−2 kg. The amount of heat expelled is then

Qc = −miceLf = −12191 J

where Lf = 3.34× 105 J/kg was used. The negative value of Qc indicates that the energy is
leaving the system. Noting that the hot reservoir is at boiling, i.e. Th = 373.15 K and the
cold reservoir is at Tc = 272.15 K and using the relation

|Qc|
|Qh|

=
Tc
Th
, (10)

the amount of heat absorbed by the system is

|Qh| =
Th
Tc
|Qc| = 16654.116 J.

Substituting these values into eqn. (9), the amount of work done by the system during the
allotted time is then

W = 4463.116 J
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From Hot to Cool: A Change in Entropy

As the ice melts, its temperature remains constant at Tice = 273.15 K, i.e. the process is
isothermal. For an isothermal process, the change in the entropy of the system is found as

∆S =
Q

T
. (11)

Knowing that the amount of heat required to melt the ice is Qice = miceLf , the change in
the entropy is then

∆Sice =
miceLf
Tice

=
(.001 kg)3.34× 105 J/kg

273.15 K
= 1.2227 J/K.

The amount of heat that was required to melt the ice was provided by the ice water, i.e.
Qice = −Qwater. Since the temperature of the ice water also remains constant, the change in
entropy is calculated to be

∆Swater = − Qice

Twater

= −(.001 kg)3.34× 105 J/kg

293.15 K
= −1.1393 J/K.

The net change in entropy of the system is then

∆Ssys = ∆Sice + ∆Swater = .084 J/K.

Carnot Heat Engine Pressure versus Volume Graph Conceptual
Question

Part A

Let Qh be the amount of energy absorbed by the Carnot engine in one cycle and Qc the
energy expelled. The total change in entropy is then

∆S =
|Qh|
Th
− |Qc|

Tc
.

Using eqn. (10), and substituting for Th in the above equation, the change of entropy is then

∆S =
|Qh| |Qc|
|Qh|Tc

− |Qc|
Tc

= 0

Part B

In accordance with the zeroth law of thermodynamics, the temperature of the surroundings
must be greater than the temperature of the gas.
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Part C

In this particular case, the amount of heat lost by the surroundings is equal to the amount
of heat gained by the gas. This means that the change in entropy is just going to depend on
the temperature of the substances in question. Since the temperature of the surroundings
is greater than the temperature of the gas, and the entropy is inversely proportional to
temperature of the substance, the entropy change of the surroundings is less than the entropy
change of the gas.

Part D

The total change in entropy of the system is equal to the sum of the change in entropy of
the gas and the change in entropy of the surroundings

∆Ssystem = ∆Sgas + ∆Ssurroundings.

Because energy is being provided by the surroundings to the gas, Qgas = −Qsurroundings, the
change in entropy of the surroundings will be negative. However, it was found in Part C that
the change in entropy of the gas is greater than the change in entropy of the surroundings
which means that the total change in entropy of the system will be positive.

Part E

In accordance with the zeroth law of thermodynamics, in order for heat to flow from the gas
to the surroundings, the temperature of the surroundings must be less than the temperature
of the gas.

Part F

Using a similar argument as that used in Part C, the magnitude of the entropy gained by
the surroundings is greater than the magnitude of the entropy lost by the gas.

Part G

Using a similar argument as that used in Part D, the net entropy change of the entire system
is positive.
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