The argument of a complex number

In this note, we examine the *argument* of a non-zero complex number z, sometimes called *angle* of z or the *phase* of z. Following eq. (4.1) on p. 49 of Boas, we write:

$$z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta}.$$

The argument of z is denoted by θ, which is measured in radians. However, there is an ambiguity in definition of the argument. The problem is that

$$\sin(\theta + 2\pi) = \sin \theta, \quad \cos(\theta + 2\pi) = \cos \theta,$$

since the sine and the cosine are periodic functions of θ with period 2π. Thus θ is defined only up to an additive integer multiple of 2π. It is common practice to establish a convention in which θ is defined to lie within an interval of length 2π. The most common convention, which we adopt below is to take

$$-\pi < \theta \leq \pi.$$

With this definition, we identify θ as the so-called principal value of the argument, which we denote by $\text{Arg } z$ (note the capital A),

$$\text{Arg } z \equiv \theta.$$

On the other hand, in many applications, it is convenient to define a multi-valued argument function, which is defined as

$$\text{arg } z \equiv \text{Arg } z + 2\pi n = \theta + 2\pi n, \quad n = 0, \pm 1, \pm 2, \pm 3, \ldots.$$

This is a multi-valued function because for a given complex number z, the number $\text{arg } z$ represents an infinite number of possible values. Although Boas does not introduce the multi-valued argument function in Chapter 2, it will become especially useful when we study the properties of the complex logarithm and complex power functions.

1. *Definition of the argument function*

The argument of a non-zero complex number is a multi-valued function which plays a key role in understanding the properties of the complex logarithm and power functions. Any non-zero complex number z can be written in polar form

$$z = |z|e^{i\text{arg } z},$$

Another common convention adopted in some books is to take $0 \leq \theta < 2\pi$. We shall not use this convention in these notes. I leave it to you to make the appropriate modifications if you prefer the latter choice.
where \(\arg z \) is a multi-valued function given by:

\[
\arg z = \theta + 2\pi n, \quad n = 0, \pm 1, \pm 2, \pm 3, \ldots
\]

Here, \(\theta \equiv \text{Arg} z \) is the so-called principal value of the argument, which by convention is taken to lie in the range \(-\pi < \theta \leq \pi\). That is,

\[
\arg z = \text{Arg} z + 2\pi n, \quad n = 0, \pm 1, \pm 2, \pm 3, \ldots, \quad -\pi < \text{Arg} z \leq \pi.
\] (2)

It will be useful to have an explicit formula for \(\text{Arg} z \) in terms of \(\arg z \). First, we introduce some notation: \([x]\) means the largest integer less than or equal to the real number \(x \). That is, \([x]\) is the unique integer that satisfies the inequality

\[
x - 1 < [x] \leq x, \quad \text{for real } x \text{ and integer } [x].
\] (3)

For example, \([1.5] = [1] = 1\) and \([-0.5] = -1\). With this notation, one can write \(\text{Arg} z \) in terms of \(\arg z \) as follows:

\[
\text{Arg} z = \arg z + 2\pi \left[\frac{1}{2} - \frac{\arg z}{2\pi} \right],
\] (4)

where \([\quad]\) denotes the bracket (or greatest integer) function introduced above. It is straightforward to check that \(\text{Arg} z \) as defined by eq. (4) does indeed fall inside the principal interval [eq. (2)].

To be complete, we note that the argument of zero is undefined. Since \(z = 0 \) if and only if \(|z| = 0 \), eq. (1) remains valid despite the fact that \(\arg 0 \) is not defined. When studying the properties of \(\arg z \) and \(\text{Arg} z \) below, we shall always assume implicitly that \(z \neq 0 \).

2. Properties of the multi-valued argument function

We can view a multi-valued function \(f(z) \) evaluated at \(z \) as a set of values, where each element of the set corresponds to a different choice of some integer \(n \). For example, given the multi-valued function \(\arg z \) whose principal value is \(\text{Arg} z \equiv \theta \), then \(\arg z \) consists of the set of values:

\[
\arg z = \{ \theta, \theta + 2\pi, \theta - 2\pi, \theta + 4\pi, \theta - 4\pi, \ldots \}.
\] (5)

Given two multi-valued functions, e.g., \(f(z) = F(z) + 2\pi n \) and \(g(z) = G(z) + 2\pi n \), where \(F(z) \) and \(G(z) \) are the principal values of \(f(z) \) and \(g(z) \) respectively, then \(f(z) = g(z) \) if and only if for each point \(z \), the corresponding set of values of \(f(z) \) and \(g(z) \) precisely coincide:

\[
\{ F(z), F(z) + 2\pi, F(z) - 2\pi, \ldots \} = \{ G(z), G(z) + 2\pi, G(z) - 2\pi, \ldots \}.
\] (6)

Sometimes, one refers to the equation \(f(z) = g(z) \) as a *set equality* since all the elements of the two sets in eq. (6) must coincide. We add two additional
rules to our concept of set equality. First, the ordering of terms within the set is unimportant. Second, we only care about the distinct elements of each set. That is, if our list of set elements has repeated entries, we omit all duplicate elements.

To see how the set equality of two multi-valued functions works, let us consider the multi-valued function \(\text{arg} \ z \). One can prove that:

\[
\text{arg}(z_1 z_2) = \text{arg} z_1 + \text{arg} z_2, \tag{7}
\]

\[
\text{arg} \left(\frac{z_1}{z_2} \right) = \text{arg} z_1 - \text{arg} z_2. \tag{8}
\]

\[
\text{arg} \left(\frac{1}{z} \right) = \text{arg} \overline{z} = -\text{arg} z. \tag{9}
\]

To prove eq. (7), consider \(z_1 = |z_1|e^{i\text{Arg} z_1} \) and \(z_2 = |z_2|e^{i\text{Arg} z_2} \). The arguments of these two complex numbers are: \(\text{arg} z_1 = \text{Arg} z_1 + 2\pi n_1 \) and \(\text{arg} z_2 = \text{Arg} z_2 + 2\pi n_2 \), where \(n_1 \) and \(n_2 \) are arbitrary integers. [One can also write \(\text{arg} z_1 \) and \(\text{arg} z_2 \) in set notation as in eq. (5).] Then it follows that

\[
z_1 z_2 = |z_1 z_2|e^{i(\text{Arg} z_1 + \text{Arg} z_2)},
\]

where we have used \(|z_1||z_2| = |z_1 z_2| \). Thus, \(\text{arg}(z_1 z_2) = \text{Arg} z_1 + \text{Arg} z_2 + 2\pi n_{12} \), where \(n_{12} \) is also an arbitrary integer. Therefore, we have established that:

\[
\text{arg} z_1 + \text{arg} z_2 = \text{Arg} z_1 + \text{Arg} z_2 + 2\pi(n_1 + n_2),
\]

\[
\text{arg}(z_1 z_2) = \text{Arg} z_1 + \text{Arg} z_2 + 2\pi n_{12},
\]

where \(n_1, n_2 \) and \(n_{12} \) are arbitrary integers. Thus, \(\text{arg} z_1 + \text{arg} z_2 \) and \(\text{arg}(z_1 z_2) \) coincide as sets, and so eq. (7) is confirmed. One can easily prove eqs. (8) and (9) by a similar method. In particular, if one writes \(z = |z|e^{i\text{arg} z} \) and employs the definition of the complex conjugate (which yields \(|\overline{z}| = |z| \) and \(\overline{z} = |z|e^{-i\text{arg} z} \)), then it follows that \(\text{arg}(1/z) = \text{arg} \overline{z} = -\text{arg} z \). As an instructive example, consider the last relation in the case of \(z = -1 \). It then follows that

\[
\text{arg}(-1) = -\text{arg}(-1),
\]

as a set equality. This is not paradoxical, since the sets,

\[
\text{arg}(-1) = \{\pm \pi, \pm 3\pi, \pm 5\pi, \ldots \} \quad \text{and} \quad -\text{arg}(-1) = \{\mp \pi, \mp 3\pi, \mp 5\pi, \ldots \},
\]

coincide, as they possess precisely the same list of elements.

Now, for a little surprise:

\[
\text{arg} z^2 \neq 2 \text{arg} z. \tag{10}
\]

To see why this statement is surprising, consider the following false proof. Use eq. (7) with \(z_1 = z_2 = z \) to derive:

\[
\text{arg} z^2 = \text{arg} z + \text{arg} z = 2 \text{arg} z, \quad \text{[FALSE!!]}. \tag{11}
\]
The false step is the one indicated by \(\dagger \). Given,
\[z = |z|e^{i\text{Arg}z}, \]
one finds that
\[z^2 = |z|^2e^{2i\text{Arg}z}, \]
and so the possible values of \(\text{arg}(z^2) \) are:
\[\text{arg}(z^2) = \{2\text{Arg}z, 2\text{Arg}z + 2\pi, 2\text{Arg}z - 2\pi, 2\text{Arg}z + 4\pi, 2\text{Arg}z - 4\pi, \ldots \}, \]
whereas the possible values of \(2\text{arg}z \) are:
\[2\text{arg}(z) = \{2\text{Arg}z, 2(\text{Arg}z + 2\pi), 2(\text{Arg}z - 2\pi), 2(\text{Arg}z + 4\pi), \ldots \} = \{2\text{Arg}z, 2\text{Arg}z + 4\pi, 2\text{Arg}z - 4\pi, 2\text{Arg}z + 8\pi, 2\text{Arg}z - 8\pi, \ldots \}. \]
Thus, \(2\text{arg}z \) is a subset of \(\text{arg}(z^2) \), but half the elements of \(\text{arg}(z^2) \) are missing from \(2\text{arg}z \). These are therefore unequal sets, as indicated by eq. (10). Now, you should be able to see what is wrong with the statement:
\[\text{arg}z + \text{arg}z \dagger = 2\text{arg}z. \tag{12} \]
When you add \(\text{arg}z \) as a set to itself, the element you choose from the first \(\text{arg}z \) need not be the same as the element you choose from the second \(\text{arg}z \). In contrast, \(2\text{arg}z \) means take the set \(\text{arg}z \) and multiply each element by two. The end result is that \(2\text{arg}z \) contains only half the elements of \(\text{arg}z + \text{arg}z \) as shown above.

Here is one more example of an incorrect proof. Consider eq. (8) with \(z_1 = z_2 \equiv z \). Then, you might be tempted to write:
\[\text{arg}\left(\frac{z}{z}\right) = \text{arg}(1) = \text{arg}z - \text{arg}z \dagger = 0. \]
This is clearly wrong since \(\text{arg}(1) = 2\pi n \), where \(n \) is the set of integers. Again, the error occurs with the step:
\[\text{arg}z - \text{arg}z \dagger = 0. \tag{13} \]
The fallacy of this statement is the same as above. When you subtract \(\text{arg}z \) as a set from itself, the element you choose from the first \(\text{arg}z \) need not be the same as the element you choose from the second \(\text{arg}z \).

3. Properties of the principal value of the argument

The properties of the principal value \(\text{Arg}z \) are not as simple as those given in eqs. (7)–(9), since the range of \(\text{Arg}z \) is restricted to lie within the principal range \(-\pi < \text{Arg}z \leq \pi \). Instead, the following relations are satisfied:
\[\text{Arg}(z_1z_2) = \text{Arg}z_1 + \text{Arg}z_2 + 2\pi N_+, \tag{14} \]
\[\text{Arg}(z_1/z_2) = \text{Arg}z_1 - \text{Arg}z_2 + 2\pi N_-, \tag{15} \]

where the integers \(N_{\pm} \) are determined as follows:

\[
N_{\pm} = \begin{cases}
-1, & \text{if } \Arg z_1 \pm \Arg z_2 > \pi , \\
0, & \text{if } -\pi < \Arg z_1 \pm \Arg z_2 \leq \pi , \\
1, & \text{if } \Arg z_1 \pm \Arg z_2 \leq -\pi .
\end{cases}
\]

(16)

If we set \(z_1 = 1 \) in eq. (15), we find that

\[
\Arg(1/z) = \Arg \bar{z} = \begin{cases}
\Arg z, & \text{if } \Im z = 0 \text{ and } z \neq 0, \\
-\Arg z, & \text{if } \Im z \neq 0.
\end{cases}
\]

(17)

Note that for \(z \) real, both \(1/z \) and \(\bar{z} \) are also real so that in this case \(z = \bar{z} \) and \(\Arg(1/z) = \Arg \bar{z} = \Arg z \).

If \(n \) is an integer, then

\[
\arg z^n = \arg z + \arg z + \cdots + \arg z \neq n \arg z ,
\]

(18)

where the final inequality above was noted in the case of \(n = 2 \) in eq. (10). The corresponding property of \(\Arg z \) is much simpler:

\[
\Arg(z^n) = n\Arg z + 2\pi N_n ,
\]

(19)

where the integer \(N_n \) is given by:

\[
N_n = \left\lfloor \frac{1}{2} - \frac{n}{2\pi} \Arg z \right\rfloor ,
\]

(20)

and \(\left\lfloor \quad \right\rfloor \) is the greatest integer bracket function introduced in eq. (3). It is straightforward to verify eqs. (14)–(17) and eq. (19). These formulae follow from the corresponding properties of \(\arg z \), taking into account the requirement that \(\Arg z \) must lie within the principal interval.