Some physical constants:
- Speed of light: \(c=3.00\times10^8 \) m/s.
- Stefan-Boltzmann constant: \(\sigma=5.67\times10^{-8} \) W/(m\(^2\)K\(^4\)).
- Planck's constant: \(h=6.63\times10^{-34} \) J s, \(h_0=1970 \) eV Å.
- Electron mass: \(m_e=9.11\times10^{-31} \) kg, \(m_e c^2=511000 \) eV.
- Electron charge: \(-e=-1.60\times10^{-19} \) C.

This exam includes 17 problems on 3 sheets and 6 pages. Please work problems 1 through 12 on this paper and 13 through 17 on separate paper.

1) (2 pts) The ground state \((n=1)\) of the hydrogen atom has one unit of orbital angular momentum (in units of \(\hbar \))

 a) True

 b) False

 \(\ell = m_\ell = 0 \) in the ground state

2) (2 pts) Light of frequency \(\nu \) shines on a metal surface and photoelectrons are emitted. Each electron emitted from the surface has a kinetic energy given by
 \[E = h\nu - \phi \]
 where \(\phi \) is a constant for a given metal called the "work function."

 a) True

 b) False

 Most electrons will have less due to scattering on the way out.

3) (2 pts) In a Compton scattering experiment light of wavelength \(\lambda \) incident on a solid target emerges with a longer wavelength \(\lambda' \). The observed increase in wavelength is due to

 a) scattering from individual atomic nuclei.

 b) coherent scattering from planes of atoms.

 c) scattering from individual quasi-free electrons.

 d) inelastic scattering from an atom in which the atom is excited into one of its higher bound states.

4) (2 pts) An electron and a photon with the same energy have the same de Broglie wavelength.

 a) True

 b) False

 \(\frac{\hbar}{\lambda} = \frac{h}{E} = \frac{hc}{E} = \frac{h}{\sqrt{E^2+m_e^2c^2}} \)

5) (2 pts) Eigenfunctions of the Schrödinger equation are always either even or odd under space inversion, \(\bar{x} \rightarrow -\bar{x} \).

 a) True

 b) False

 True only if the potential is symmetric
 \[(V(\bar{x}) = V(-\bar{x})) \]
7) (2 pts) There is a minimum frequency below which electromagnetic radiation incident on a metal will not cause any photoelectrons to be emitted, no matter how intense the radiation.
 a) True
 b) False

8) (3 pts) For the following 1-D potential, indicate for each energy range whether the energy eigenvalues are **continuous** or **quantized**. Assume that outside of the drawn region the potential is always equal to zero.

 ![Potential Diagram]

 a) \(-V_0 < E < 0\) **quantized**
 b) \(0 < E < V_0\) **continuous**
 c) \(E > V_0\) **continuous**

9) (2 pts) Suppose that a particle of mass \(m\) is in a harmonic oscillator potential with spring constant \(C\) in the \(n\)’th stationary state. Then the probability density \(|\Psi_n(x,t)|^2\) will oscillate back and forth as time progresses with angular frequency

 \[\omega = \frac{E_n}{\hbar} = (n + \frac{1}{2})\sqrt{C/m}\]

 a) True
 b) False

10) (2 pts) Suppose that a particle in a time-independent quantum system has a wave function \(\Psi(x,t)\) that, in the case of the harmonic oscillator potential, never goes to zero as \(x \to \pm \infty\).

 a) The wave function must be a solution to the Schrödinger equation.
 b) The wave function must be continuous and smooth.
 c) The wave function must be zero in the region where \(E < V_0\).

11) (2 pts) Which of the following sets of observable quantities (eigenvalues) fully distinguishes the eigenstates of a central potential \(V(r)\), such as the coulomb potential?

 a) The spherical coordinates of the particle: \(r, \theta, \varphi\).
 b) The three components of the angular momentum: \(L_x, L_y, L_z\).
 c) The energy \(E\), mean radius \(\langle r \rangle\), and the magnitude of the angular momentum \(|\vec{L}|\).
 d) The energy \(E\), magnitude of the angular momentum \(|\vec{L}|\), and \(L_z\).
12) (10 pts) Ultraviolet light shines on the metallic cathode in the tube shown here. Suppose that the wavelength of the light is \(\lambda = 2000 \, \text{Å} \) and the work function of the metal surface is \(\phi = 2 \, \text{eV} \).

a) What is the voltage \(V \) at which the current ceases to flow? Positive voltage is in the direction indicated in the figure.

The kinetic energy is \(K = h\nu - \phi \)

\[
K = \frac{2\pi \cdot 1.975 \, \text{eV} \cdot \text{Å}}{2000 \, \text{Å}} - 2\text{eV} = 4.17 \, \text{eV} \quad \text{maximum}
\]

A voltage of \(-4.17 \, \text{V}\) is needed to stop all of the electrons.

b) Make a sketch of how the current in the circuit depends on the voltage for two different intensities of light.
13) (6 pts) List all possible combinations of the quantum numbers ℓ and m_ℓ for the $n=3$ state of the hydrogen atom.

14) (10 pts) Electrons are incident upon the surface of a crystal in which the spacing of atomic planes is 1.5 Å. Given that the minimum angle θ for which a maximal amount of scattering is observed is 25°, what is the momentum of the electrons in the beam in units of keV/c? (You can ignore the work function of the crystal.)

15) (15 pts) Consider the following 1-D potential barrier. A monoenergetic beam of particles of mass m and $E > V_0$ is incident from the left.

\[V(x) \]
\[E \]
\[V_0 \]
\[0 \]
\[x \]

a) Find the complete expression for the spatial part of the wave function of a beam particle in the region $x < 0$ in terms of E, m, V_0, and \hbar. There should be only a single arbitrary constant remaining (the overall normalization factor).

b) What is the probability for a particle to reflect from the step at $x=0$ if $E = 2V_0$?
13) (6 pts) List all possible combinations of the quantum numbers ℓ and m, for the n=3 state of the hydrogen atom.

14) (10 pts) Electrons are incident upon the surface of a crystal in which the spacing of atomic planes is 1.5 Å. Given that the minimum angle θ for which a maximal amount of scattering is observed is 25°, what is the momentum of the electrons in the beam in units of keV/c? (You can ignore the work function of the crystal.)

15) (15 pts) Consider the following 1-D potential barrier. A monoenergetic beam of particles of mass m and $E > V_0$ is incident from the left.

(a) Find the complete expression for the spatial part of the wave function of a beam particle in the region $x < 0$ in terms of E, m, V_0, and \hbar. There should be only a single arbitrary constant remaining (the overall normalization factor).

(b) What is the probability for a particle to reflect from the step at $x=0$ if $E = 2V_0$?
\[n = 2 \]

\[\ell = \begin{array}{c|c}
0 & m_\ell = 0 \\
1 & m_\ell = -1, 0, +1 \\
2 & m_\ell = -2, -1, 0, +1, +2 \\
\end{array} \]
14. Bragg scattering

For constructive interference, \(2d \sin \theta = n \lambda\)

Minimum angle \(\theta\) for \(n = 1\)

\[\lambda = 2d \sin \theta = 2 \cdot 1.5 \cdot \sin 25^\circ = 1.27\]

\[p = \frac{\lambda}{2} = \frac{2 \pi hc}{\lambda} \frac{1}{c} = \frac{2 \pi \cdot 1970}{1.27} \frac{1}{c} = 9.75 \text{ keV}\]

15.

(a) \(\psi_i(x) = A e^{ik_x x} + B e^{-ik_x x} \quad k_x = \frac{\sqrt{2 \pi E}}{\hbar}\)

\(\psi_s(x) = C e^{ik_{s1} x} \quad k_{s1} = \frac{\sqrt{2 \pi (E-V_c)}}{\hbar}\)

\(\psi_i(0) = \psi_s(0) \left(A + B = C \right) i k_x\)

\(\psi_i'(0) = \psi_s'(0) \left(i k_x (A - B) = i k_x C \right)\)

\(i(k_{s1} - k_x) A + i(k_x + k_{s1}) B = 0\)

\[B = \frac{k_{s1} - k_x}{k_x + k_{s1}} A = \frac{\sqrt{E - V_c}}{\sqrt{E + V_c}} A\]

\(\psi_i(x) = A \left[e^{ik_x x} + \left(\frac{\sqrt{E - V_c}}{\sqrt{E + V_c}} \right)^{ik_{s1} x} \right]\)

\[P = \left[\frac{\sqrt{E - V_c}}{\sqrt{E + V_c}} \right]^2 = \left[\frac{\sqrt{2} - \sqrt{2} - 1}{\sqrt{2} + \sqrt{2} - 1} \right]^2 = \left[\frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right]^2 = 0.029\]
(a) \[E^\pi_1 + E^\pi_2 = m_K c^2 \]
\[p^\pi_1 + p^\pi_2 = 0 \]
Since \(m_1 = m_2 \) this means that \(E^\pi_1 = E^\pi_2 \)

So, \[2E^\pi = m_K c^2 \]
\[E^\pi = \frac{1}{2} \cdot 2.49 = 2.49 \text{ MeV} \]

\[p^\pi = \sqrt{E^2 - m^2} = \sqrt{2.49^2 - 140^2} = 2.06 \text{ MeV/c} \]

(b) \[\beta = 0.60 \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}} = 1.25 \]
\[p^\prime = \gamma [p/c + \beta E_1] \quad \text{Lorentz transformation} \]
\[p^\prime = 1.25 [(2.06 + 0.60 \cdot 2.49)] = 4.44 \text{ MeV} \]
\[p^\prime_1 = 1.25 [-2.06 + 0.60 \cdot 2.49] = -7.1 \text{ MeV} \]
\[p^\prime_1 = 4.44 \text{ MeV/c in lab (in direction of the K_s)} \]
\[p^\prime_2 = -7.1 \text{ MeV/c in lab} \]
17. \(\psi_1(x) = A \sin k_1 x \quad k_1 = \frac{\sqrt{2m(E-V_0)}}{\hbar} \)

\[\Rightarrow 0 \quad \text{at} \quad x = 0 \]

\(\psi_2(x) = B \sin k_2 (x-a) \quad k_2 = \frac{\sqrt{2mV}}{\hbar} \)

\[\Rightarrow 0 \quad \text{at} \quad x = a \]

\(\psi_1(x) = \psi_2(x) \quad A \sin k_1 x = B \sin k_2 (x-a) = -B \sin k_2 a \)

\(\psi_1'(x) = \psi_2'(x) \quad k_1 A \cos k_1 x = k_2 B \cos k_2 (x-a) = k_2 B \cos k_2 a \)

\(A \sin k_1 x = -B \sin k_2 x \quad k_1 A \cos k_1 x = k_2 B \cos k_2 x \)

Div. dc:

\[\frac{1}{k_1 \tan k_1 \chi} = -\frac{1}{k_2 \tan k_2 \chi} \]

\[\frac{1}{\sqrt{E-V_0}} \tan \frac{\sqrt{2m(E-V_0)}}{\hbar} \chi = -\frac{1}{\sqrt{E}} \tan \frac{\sqrt{2mE}}{\hbar} \chi \]