N-Channel JFET

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>$V_{GS\text{off}}$ (V)</th>
<th>$V_{BR\text{GSS}}$ Min (V)</th>
<th>g_m Min (mS)</th>
<th>I_{DSS} Min (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ -8</td>
<td>-25</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

FEATURES
- Excellent High-Frequency Gain: G_{ps} 11 dB @ 400 MHz
- Very Low Noise: 3 dB @ 400 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation
- High Gain: $A_V = 60$ @ 100 μA

BENEFITS
- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

APPLICATIONS
- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

DESCRIPTION

The 2N3819 is a low-cost, all-purpose JFET which offers good performance at mid-to-high frequencies. It features low noise and leakage and guarantees high gain at 100 MHz.

Its TO-226AA (TO-92) package is compatible with various tape-and-reel options for automated assembly (see Packaging Information). For similar products in TO-206AF (TO-72) and TO-236 (SOT-23) packages, see the 2N4416/2N4416A/SST4416 data sheet.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-Source/Gate-Drain Voltage</td>
<td>-25 V</td>
</tr>
<tr>
<td>Forward Gate Current</td>
<td>10 mA</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55 to 150°C</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>-55 to 150°C</td>
</tr>
<tr>
<td>Lead Temperature ($\frac{1}{16}$" from case for 10 sec.)</td>
<td>300°C</td>
</tr>
<tr>
<td>Power Dissipationa</td>
<td>350 mW</td>
</tr>
</tbody>
</table>

Notes
- Derate 2.8 mW/°C above 25°C

Document Number: 70238
S–04028—Rev. D, 04-Jun-01

www.vishay.com
SPECIFICATIONS (T_A = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Source Breakdown Voltage</td>
<td>V<sub>(BR)GSS</sub></td>
<td>I<sub>G</sub> = –1 μA, V<sub>DS</sub> = 0 V</td>
<td>–25 –35</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Cutoff Voltage</td>
<td>V<sub>GS(off)</sub></td>
<td>V<sub>DS</sub> = 15 V, I<sub>G</sub> = 2 nA</td>
<td>–3 –8</td>
<td>mA</td>
</tr>
<tr>
<td>Saturation Drain Current<sup>a</sup></td>
<td>I<sub>DS</sub></td>
<td>V<sub>DS</sub> = 15 V, V<sub>GS</sub> = 0 V</td>
<td>2 10 20</td>
<td>mA</td>
</tr>
<tr>
<td>Gate Reverse Current</td>
<td>I<sub>GS</sub></td>
<td>V<sub>GS</sub> = –15 V, V<sub>DS</sub> = 0 V</td>
<td>–0.002 –2</td>
<td>nA</td>
</tr>
<tr>
<td>Saturation Drain Current<sup>b</sup></td>
<td>I<sub>DS</sub></td>
<td>V<sub>DS</sub> = 10 V, I<sub>G</sub> = –8 V</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Drain Cutoff Current</td>
<td>I<sub>DS(off)</sub></td>
<td>V<sub>GS</sub> = 0 V, I<sub>D</sub> = 1 mA</td>
<td>150</td>
<td>Ω</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V<sub>GS</sub></td>
<td>V<sub>DS</sub> = 15 V, I<sub>G</sub> = 200 μA</td>
<td>–0.5 –2.5 –7.5</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Forward Voltage</td>
<td>V<sub>GS(F)</sub></td>
<td>I<sub>G</sub> = 1 mA, V<sub>DS</sub> = 0 V</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common-Source Forward Transconductance<sup>c</sup></td>
<td>g<sub>fs</sub></td>
<td>V<sub>DS</sub> = 15 V, V<sub>GS</sub> = 0 V</td>
<td>f = 1 kHz</td>
<td>2 5.5 6.5</td>
</tr>
<tr>
<td>Common-Source Output Conductance<sup>c</sup></td>
<td>g<sub>os</sub></td>
<td>V<sub>DS</sub> = 15 V, V<sub>GS</sub> = 0 V</td>
<td>f = 1 kHz</td>
<td>2 5.5</td>
</tr>
<tr>
<td>Common-Source Input Capacitance</td>
<td>C<sub>iss</sub></td>
<td>V<sub>DS</sub> = 15 V, V<sub>GS</sub> = 0 V</td>
<td>f = 1 MHz</td>
<td>2.2 8</td>
</tr>
<tr>
<td>Common-Source Reverse Transfer Capacitance</td>
<td>C<sub>rss</sub></td>
<td>V<sub>DS</sub> = 10 V, V<sub>GS</sub> = 0 V, f = 1 MHz</td>
<td>0.7 4</td>
<td></td>
</tr>
<tr>
<td>Equivalent Input Noise Voltage<sup>c</sup></td>
<td>σ<sub>n</sub></td>
<td>V<sub>DS</sub> = 10 V, V<sub>GS</sub> = 0 V, f = 100 Hz</td>
<td>6</td>
<td>nV/√Hz</td>
</tr>
</tbody>
</table>

Notes:
- a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- b. Pulse test: PW ≤ 300 μs, duty cycle ≤ 2%.
- c. This parameter not registered with JEDEC.

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Gate Leakage Current

Common-Source Forward Transconductance vs. Drain Current

Output Characteristics

Transfer Characteristics

Transfer Characteristics
TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

Transconductance vs. Gate-Source Voltage

Transconductance vs. Gate-Source Voltage (V)

On-Resistance vs. Drain Current

Circuit Voltage Gain vs. Drain Current

Common-Source Input Capacitance vs. Gate-Source Voltage

Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage

Assume V_DD = 15 V, V_DS = 5 V

R_L = V_{DS} / I_D

A_V = g_{fs} R_L / (1 + g_{fs} R_L)

V_GS = -2 V, -3 V

V_DS = 0 V, 10 V

f = 1 MHz

T_A = -55°C, 25°C, 125°C
TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED)

Input Admittance

- **Parameters:**
 - $T_A = 25°C$
 - $V_{DS} = 15\text{ V}$
 - $V_{GS} = 0\text{ V}$
 - Common Source

- **Graph:**
 - Frequency (MHz) vs. Admittance (mS)

Forward Admittance

- **Parameters:**
 - $T_A = 25°C$
 - $V_{DS} = 15\text{ V}$
 - $V_{GS} = 0\text{ V}$
 - Common Source

- **Graph:**
 - Frequency (MHz) vs. Admittance (mS)

Reverse Admittance

- **Parameters:**
 - $T_A = 25°C$
 - $V_{DS} = 15\text{ V}$
 - $V_{GS} = 0\text{ V}$
 - Common Source

- **Graph:**
 - Frequency (MHz) vs. Admittance (mS)

Output Admittance

- **Parameters:**
 - $T_A = 25°C$
 - $V_{DS} = 15\text{ V}$
 - $V_{GS} = 0\text{ V}$
 - Common Source

- **Graph:**
 - Frequency (MHz) vs. Admittance (mS)

Equivalent Input Noise Voltage vs. Frequency

- **Graph:**
 - Frequency (Hz) vs. Noise Voltage (nV/√Hz)

Output Conductance vs. Drain Current

- **Graph:**
 - Drain Current (mA) vs. Conductance (mS)

Legend:

- b is...
- g is...
- $T_A = 25°C$
- $V_{DS} = 15\text{ V}$
- $V_{GS} = 0\text{ V}$
- Common Source

Additional Parameters:*

- $I_D = 5\text{ mA}$
- $I_D = I_{DSS}$
- $V_{GS(off)} = -3\text{ V}$
- $V_{GS} = 10\text{ V}$
- $f = 1\text{ kHz}$