Solve the following three exercises:

1. A cartesian coordinate system with axes x, y, z is rotating relative to an inertial frame with constant angular velocity ω about the z-axis. A particle of mass m moves under a force whose potential is $V(x, y, z)$. Set up the Lagrange equations of motion in the coordinate system x, y, z. Show that these equations are the same as those for a particle in a fixed coordinate system acted on by the force $-\nabla V$ and a force derivable from a velocity-dependent potential U, and find U.

2. A point particle of mass m is constrained to move frictionlessly on the inside surface of a circular wire hoop of radius r, uniform density and mass M. The hoop is in the xy-plane, it can roll on a fixed line (the x-axis), but it does not slide, nor can it lose contact with the x-axis. The point particle is acted on by gravity exerting a force along the negative y-axis. At $t = 0$ suppose the hoop is at rest. At this time the particle is at the top of the hoop, and is given a velocity v_0 along the x-axis. What is the velocity v_f, with respect to the fixed axis, when the particle comes to the bottom of the hoop? Simplify your answer in the limits $m/M \to 0$ and $M/m \to 0$.

3. Assume the Lagrangian for a certain one-dimensional system is given by

$$L = e^{\gamma t} \left(\frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2 \right),$$

where γ, m, k are positive constants. Calculate Lagrange’s equations, and give a qualitative description of the particle motion for different values of the constants. Suppose a point transformation is made to another generalized coordinate S, given by

$$S = \exp \left(\frac{\gamma t}{2} \right) q.$$

What is the Lagrangian in terms of S? Find Lagrange’s equation, and describe the relationship between the motion in the two coordinate systems.