Homework Set #1.

Due Date: Monday October 16, 2012

Solve the following three exercises:

1. A particle starts at rest and moves along a cycloid whose equation is

 \[x = \pm \left[a \cos^{-1}\left(\frac{a-y}{a} \right) + \sqrt{2ay - y^2} \right]. \]

 There is a gravitational field of strength \(g \) in the negative \(y \) direction. Obtain and solve the equations of motion. Show that no matter where on the cycloid the particle starts out at time \(t = 0 \), it will reach the bottom at the same time.

2. A point particle of mass \(m \) is constrained to move frictionlessly on the inside surface of a circular wire hoop of radius \(r \), uniform density and mass \(M \). The hoop is constrained to the \(xy \)-plane, it can roll on a fixed line (the \(x \)-axis), but it does not slide, nor can it lose contact with the \(x \)-axis. The point particle is acted on by gravity exerting a force along the negative \(y \)-axis. At \(t = 0 \) suppose the hoop is at rest. At this time the particle is at the top of the hoop, and is given a velocity \(v_0 \) along the \(x \)-axis. What is the velocity \(v_f \), with respect to the fixed axis, when the particle comes to the bottom of the hoop? Simplify your answer in the limits \(m/M \to 0 \) and \(M/m \to 0 \).

3. A double plane pendulum consists of a simple pendulum (mass \(m_1 \), length \(l_1 \)) with another simple pendulum (mass \(m_2 \), length \(l_2 \)) suspended from \(m_1 \), both constrained to move in the same vertical plane.

 (a) Describe the configuration manifold \(Q \) of this dynamical system. Say what you can about \(TQ \) (the tangent bundle of \(Q \)).

 (b) Write down the Lagrangian of this system in suitable coordinates.

 (c) Derive Lagrange’s equations.

4. A cartesian coordinate system with axes \(x, y, z \) is rotating relative to an inertial frame with constant angular velocity \(\omega \) about the \(z \)-axis. A particle of mass \(m \) moves under a force whose potential is \(V(x, y, z) \). Set up the Lagrange equations of motion in the coordinate system \(x, y, z \). Show that these equations are the same as those for a particle in a fixed coordinate system acted on by the force \(-\nabla V \) and a force derivable from a velocity-dependent potential \(U \), and find \(U \).