Homework Set #3.

Due Date - Oral Presentation: Wednesday October 21, 2015
Due Date - Written Solutions: Wednesday October 28, 2015

1. Muon decay in the Fermi theory
 A muon decays to an electron, an electron (anti)neutrino and a muon neutrino,
 \[\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e. \]
 In the so-called Fermi theory, the matrix element for this process, ignoring the electron and neutrinos masses, is given by
 \[|M|^2 = 32 G_F^2 (m^2 - 2mE) mE, \]
 where \(m \) is the muon mass, \(E \) is the energy of the outgoing electron antineutrino, and \(G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2} \) is the Fermi constant.

 (a) Perform the integral over \(d\Pi_{\text{LIPS}} \) and show that the decay rate reads:
 \[\Gamma = \frac{G_F^2 m^5}{192\pi^3}; \]
 (b) Convert from natural units to inverse seconds, using \(m = 106 \text{ MeV} \), and compare your result to the observed value \(\tau = \Gamma^{-1} = 2.20 \mu\text{s} \). How big is the discrepancy as a percentage? What might account for the discrepancy?

2. Mandelstam variables
 We calculated that the \(e^+ e^- \rightarrow \mu^+ \mu^- \) cross section had the form, in the CM frame,
 \[\frac{d\sigma}{d\Omega} = \frac{e^4}{64\pi^2 E_{\text{CM}}^2} (1 + \cos^2 \theta). \]

 (a) Work out the Lorentz-invariant quantities
 \[s = (p_{e^+} + p_{e^-})^2, \quad t = (p_{\mu^-} - p_{e^-})^2, \quad u = (p_{\mu^+} - p_{e^-})^2, \]
known as Mandelstam variables, in terms of E_{CM} and $\cos \theta$ (still assuming $m_\mu = m_e = 0$).

(b) Derive a relationship between s, t and u.

(c) Rewrite $\frac{d\sigma}{dt}$ in terms of s, t and u.

(d) Now assume m_μ and m_e are non-zero. Derive a relationship between s, t and u and the masses.