Scintillator Fibers for Intermediate Tracking and Bunch Identification

OUTLINE

- The problem
- Planned work: simulations, hardware
- Current status, some results

Rick Van Kooten
Indiana University

Mike Hildreth
Univ. of Notre Dame

University Texas, Arlington
8—11 January 2003
Indiana University

RvK (faculty),
50% postdoc (other 50% D0), starting
1 Jan. 2003, Daniela Bauer
Keith Turpin (undergrad)

University Notre Dame

Mike Hildreth (faculty), Randy Ruchti (faculty)
Mitch Wayne (faculty),
Jadzia Warchol (research scientist),
Barry Baumbaugh (engineer)

Fermilab

Alan Bross (staff physicist)

Request

First year, $39.5k

Mostly equipment and DAQ modifications,
also parts, consumbables for test stand
Effects of Bunch Overlap

NLC Bunch Structure:

- Many bunches per train
- Trains at 120 Hz, msec between trains
- 1.4 nsec spacing between bunches
- High luminosity per bunch

Design luminosity = 2.2×10^{-34} cm$^{-2}$s$^{-1}$

$$\mathcal{L}_\text{bunch} = \frac{2.2 \times 10^{-34} \text{ cm}^{-2}\text{s}^{-1}}{190 \times 120 \text{ s}^{-1}}$$

$$\int \mathcal{L}_\text{bunch} \sim 1.0 \mu\text{b}$$

Problem: Physics process with largest cross section gives largest contribution to event-event overlap

- Multiple interactions in single bunch (but not spread out in z like at Tevatron!)
- Hadrons from $\gamma\gamma$ interactions of the beamstrahlung photons
- Multiple bunch collisions within the integration time of detector components (same luminous region in z, slightly out-of-time depending on bunch)
Scintillating fiber tracker, $\sigma \sim 1 \text{ nsec}$

system wide should be possible, resolve single bunches

"Strawman" for L detector:
Two axial layers, two 3 degree stereo layers
Half-length of 29.5 cm, average radius of 48 cm
(mounted on inside of inner layer of TPC)

~15,000 channels

Single-hit resolution of 80–100 μm ,
has been checked using Bruce S.'s programs that extra material does not degrade impact parameter resolution

Some physics studies already performed of Higgs events overlapped with 2-photon events
detector simulations, adding 0.7% X_0 at this radius; extra material, but more measurement points

almost a "wash"; at least no degradation (same is true for impact parameter resolution)

new: student started with work implementing to check effects on pattern recognition/track-finding
- Largest effects on channels involving invisible energy and missing mass

- e.g., measurement of WW-fusion production cross section: $\sigma(\nu\nu h)$:

- Potentially large relative systematic effect (use same templates, 2.0% effect) if background level not known well,

- New: contributions $\sim 60\%$ charged particles, $\sim 40\%$ neutrals for $\cos(\theta) < 0.97$ cut

Changes depending on forward tracking and forward calorimetry,
\Rightarrow want timing in forward region too

- TPC still has decent timing, integrates over a few bunches. Maximum impact of above overlapping multiple events with Poisson distribution being studied.
Existing Test Stand, Lab 3, Fermilab

Carbon Fiber Cylinder for sci. fiber ribbon mounting

Scintillator

30cm

x

y

z

Iron

VLPC readout, cryostat, DAQ

Frontend board

Cryostat

VME Crate

PC

Ethernet

SGI
- Modify DAQ for fast timing

- Piggy-back on D0 tests for using fast timing (MCMII, "Trip Chip", discriminator) from one end for z measurement; modify readout for both ends

- Measure system timing resolution, compare to MC simulations. IU student with light path/response MC verifying time resolutions

![Graph showing time resolution](image)

- Bross, MC predictions (single end)

- Fibers in hand, faster fluorescence
• Notre Dame/FNAL: SBIR/STTR collaborations for scint. fibers more light yield, faster decay?

• Continue Higgs simulations for timing impact

Future (following years)

• Continued optimization of fiber formulation and VLPC version (multi-anode PMT's as anode count continues to increase...?)

• R&D for integration with a TPC

• Collaboration with calorimeter groups? (e.g., silicon/tungsten calorimeter, time resolution of ~10 nsec...) Embedding of scintillator fibers into calorimeter systems – precise timing of neutral clusters also