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Solving the Simple Harmonic Oscillator

1. The harmonic oscillator solution: displacement as a function of time

We wish to solve the equation of motion for the simple harmonic oscillator:

d 2x

dt2
= −

k

m
x , (1)

where k is the spring constant and m is the mass of the oscillating body that is
attached to the spring. We impose the following initial conditions on the problem.
At t = 0, the initial displacement is denoted by x0 and the corresponding velocity
is denoted by v0. That is,

x(t = 0) ≡ x0 , and
dx

dt
(t = 0) = v0 . (2)

These initial conditions then uniquely specify the problem.
The method we shall employ for solving this differential equation is called the

method of inspired guessing. In class, we argued that the motion of the oscillating
body was periodic. Since the sine and cosine functions are periodic, we propose
the following solution for the displacement x as a function of the time t:

x(t) = x0 cos ωt + b sin ωt , (3)

where b and ω are to be determined. If we set t = 0, we find x(t = 0) = x0 as
required, so one of the two initial conditions is automatically satisfied. The initial
condition for the velocity will determine b. That is, take the derivative of eq. (3)
with respect to t. This yields:

v(t) ≡
dx

dt
= −ωx0 sin ωt + ωb cos ωt . (4)

Setting t = 0 in eq. (4) then yields v0 = ωb; hence

b =
v0

ω
. (5)

Thus, our proposed solution now has the following form:

x(t) = x0 cos ωt +
v0

ω
sin ωt . (6)

This solution clearly satisfies the two initial conditions specified by eq. (2).
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We have not yet proved that eq. (6) is in fact a solution to eq. (1). To do this,
we compute the second derivative of x with respect to t. Taking two derivatives
of eq. (6) with respect to t yields:

d 2x

dt2
= −ω2x0 cos ωt − ωv0 sin ωt

= −ω2

(

x0 cos ωt +
v0

ω
sin ω

)

= −ω2x . (7)

Thus, we have verified that
d2x

dt2
= −ω2x . (8)

Comparing with eq. (1), we conclude that ω2 = k/m, or

ω =

√

k

m
. (9)

2. The amplitude/phase form of the harmonic oscillator solution

Giancoli writes the solution to eq. (1) in another form:

x(t) = A cos(ωt + φ) , (10)

where A is a positive constant. Two questions immediately come to mind. First,
why would one prefer a solution of the form of eq. (10)? Second, is the solution
given by eq. (10) identical to the one given by eq. (6)? One advantage of eq. (10)
is that it satisfies the inequality:

|x(t)| ≤ A , (11)

which follows from the well known result | cos θ| ≤ 1. This allows us to immedi-
ately identify A as the amplitude of the oscillation. The angle φ is called the phase

of the oscillation, and I will have more to say about this phase angle in section 4.
To show that eqs. (10) and (6) are equivalent, we make use of the trigonometric
identity:

cos(α + β) = cos α cos β − sin α sin β . (12)

Identifying α = ωt and β = φ, we can rewrite eq. (10) as:

x(t) = A cos ωt cosφ − A sin ωt sinφ . (13)

This result is precisely equivalent to eq. (6) if we identify:

x0 = A cos φ , and
v0

ω
= −A sin φ . (14)
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Thus, we have demonstrated that Giancoli’s solution is equivalent to that of
eq. (6).

3. The amplitude A of the oscillator

We can now use eq. (14) to relate the amplitude A and the phase φ to the
initial conditions for the displacement and the velocity. Let us rewrite eq. (14) as:

cos φ =
x0

A
, and sin φ = −

v0

ωA
. (15)

Using the trigonometric identity sin2 φ + cos2 φ = 1, it follows that:

x2

0

A2
+

v2

0

ω2A2
= 1 . (16)

Cross-multiplying by A2, we can solve for A:

A =

√

x2

0
+

v2

0

ω2
. (17)

4. The phase φ of the oscillator

The phase angle φ can be determined from eq. (15). However, there is a slight
complication—namely, φ is not uniquely defined, since I can add 2π to the phase
angle without changing any physical results.∗ Thus, we say that the phase angles
φ and φ+2π are “equivalent,” meaning that they lead to the same physical results.
Thus, I can establish a convention in which the value of φ is chosen to lie within
some interval of length 2π. The most common convention is to choose φ such
that:

−π < φ ≤ π . (18)

That is, φ lies between −180◦ and 180◦. Note that I have included one of the
endpoints, π, in the interval specified by eq. (18), but not the other endpoint −π.
I have made this choice since the phase angle −π is “equivalent” to the phase
angle −π + 2π = π (using the meaning of “equivalent” explained above).

It is tempting to divide the two equations given in eq. (15), which yields:†

tanφ ≡
sin φ

cos φ
= −

v0

ωx0

. (19)

∗Noting that x(t) = cos(ωt + φ) = cos(ωt + φ + 2π) [i.e., the cosine is a periodic function
with period 2π], we wee that the phase angle φ and φ + 2π yield the same solution for x(t).

†Eq. (19) would seem to imply that φ = − tan−1[v0/(ωx0)]. However, this form is not
especially convenient as the inverse tangent (also called the arctangent) is often defined to lie in
an interval between −π/2 and π/2. See the discussion following eq. (19).
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However, in doing so, we have lost some information, since changing the sign of
both x0 and v0 changes the phase angle by π but does not change the value of
tan φ. This is not surprising since tan(φ+π) = tanφ, i.e. the tangent is a periodic
function with period π. The simplest way to avoid the ambiguity of eq. (19) is to
notice that eq. (15) implies that:

v0 < 0 =⇒ 0 < φ < π ,

v0 > 0 =⇒ −π < φ < 0 ,

v0 = 0 and x0 > 0 =⇒ φ = 0 ,

v0 = 0 and x0 < 0 =⇒ φ = π . (20)

Then, eqs. (19) and (20) determine the phase angle φ uniquely within its defined
interval as specified by eq. (18).

The significance of the phase angle φ is that it determines by how much the
displacement, x(t) = A cos(ωt + φ) leads or lags behind as compared to a pure
cosine curve, A cos ωt. The pure cosine curve has a maximum at t = 0, whereas
x(t) = A cos(ωt+φ) has a maximum when cos(ωt+φ) = 1. The latter implies that
the maximum of the displacement closest to time t = 0 occurs when ωt + φ = 0
or t = −φ/ω. If φ < 0, then this maximum occurs for positive t, as shown in
fig. 14.7 of Giancoli. In this case, we say that the phase of x(t) lags behind the
pure cosine curve, since we have to wait a positive time interval (∆t = −φ/ω in
fig. 14.7) before reaching the maximum. If φ > 0, then this maximum occurs for
negative t. In this case, the maximum has been achieved before the maximum of
the pure cosine curve; and thus the phase of x(t) leads that of the pure cosine
curve.

5. Two simple examples

We review the two simple examples introduced by Giancoli on page 373.

1. In the first example, we start the pendulum with zero velocity (v0 = 0) at
a displacement x0 = A. Indeed, eq. (17) confirms that for v0 = 0 we have x0 = A.
That is, for zero initial velocity the displacement of the pendulum at t = 0 is the
amplitude of the oscillation. Moreover, eq. (20) yields φ = 0 [note that eq. (19) is
consistent with this result]. Hence, eq. (10) yields

x(t) = A cos ωt . (21)

2. In the second example, we start the pendulum at its equilibrium point
(x0 = 0) with initial positive velocity v0 > 0. In this case, eq. (17) yields A = v0/ω,
and eq. (20) implies that −π < φ < 0. Finally, we use eq. (19) to conclude that
φ = −π/2. Hence, eq. (10) yields

x(t) = A cos
(

ωt −
π

2

)

= A sin ωt . (22)
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