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In this note, I will demonstrate that a theory of a massless neutrino (in
3+1-dimensional quantum field theory) can be described either as a theory of
a massless Weyl fermion or as a theory of a massless four-component Majorana
fermion. The two formulations are indistinguishable, as they arise from exactly
the same Lagrangian when expressed in terms of two-component fermions. I
will also exhibit the equivalence of one massive Dirac fermion with a theory of
two mass-degenerate Majorana fermions. Finally, I will argue that no disconti-
nuities arise when taking the m→ 0 limit of a theory of one Majorana fermion
of mass m, or when taking the m1 → m2 limit of a theory of two Majorana
fermions of mass m1 and m2, respectively.

First, some facts about two-component anti-commuting spinors. Introduce
undotted spinors ξα with α = 1, 2 and dotted spinors ηα̇ ≡ ηα∗. Indices are
raised and lowered with ǫαβ = iσ2 (where σ2 is the usual Pauli matrix) and
ǫαβ = −iσ2 (ǫ-tensors with dotted indices are defined similarly). We introduce
σµ = (I;σi) and σµ = (I;−σi), where I is the 2×2 identity matrix. Explicitly,
σµ and σµ possess the following spinor index structure: σµ

αα̇ and σµα̇α. Finally,
spinor products are defined as

χξ ≡ χαξα = ǫαβχβξα , (1)

χξ ≡ χα̇ξ
α̇

= ǫα̇β̇χ
β̇ξ

α̇
. (2)

Note that χξ = ξχ and χξ = ξχ due to the anti-commuting properties of the
spinors and the antisymmetry of the ǫ-tensor. Finally, hermitian conjugation
of a spinor product reverses the order of the spinors. Using the above results,
it follows that (χξ)† = χξ. The following notation for spinor products is also
useful:

χσµη ≡ χασµ
αα̇η

α̇ , (3)

χσµη ≡ χα̇σ
µα̇αηα . (4)

One can easily show that (χσµξ)† = ξσµχ and χσµη = −η σµχ.

Four-component notation is established as follows. A four-component
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spinor has the form:

ψ =

(

ξα
ηα̇

)

. (5)

The γ-matrices can be written as:

γµ =

(

0 σµαβ̇

σµα̇β 0

)

, (6)

γ5 ≡ iγ0γ1γ2γ3 =

(

−I 0
0 I

)

. (7)

Left and right-handed projection operators are:

PL ≡ 1

2
(1 − γ5) , (8)

PR ≡ 1

2
(1 + γ5) , (9)

where 1 is the 4× 4 identity matrix. A Majorana spinor is obtained by setting
η = ξ in eq. (5):

ψM =

(

ξα

ξ
α̇

)

. (10)

If we introduce the charge conjugation matrix C = iγ0γ2, and define the

charge-conjugated spinor by ψc ≡ Cψ
T
, then it is easy to check that ψc

M = ψM .
It is useful to develop a translation table between two-component and

four-component spinors. Introducing two four-component spinors

ψ1 =

(

ξ1
η1

)

, ψ2 =

(

ξ2
η2

)

(11)

the following translation table is obtained:

ψ1PLψ2 = η1ξ2 , (12)

ψ1PRψ2 = η2ξ1 , (13)

ψ1γ
µPLψ2 = ξ1σ

µξ2 , (14)

ψ1γ
µPRψ2 = −η2σ

µη1 . (15)

I shall first write down the theory of an electron and a massless neutrino
interacting via charged W exchange. (I have also obtained the entire Standard
Model in two-component notation but this will not be needed here.) Then,

2



I will convert from two-component to four-component notation to obtain the
well-known form for the interaction of an electron and neutrino.

First, introduce the following two-component fields: an SU(2) doublet
ψL = (ψL1

, ψL2
) with hypercharge Y = −1, and an SU(2) singlet ψE with

hypercharge Y = +2. The corresponding electric charges are obtained as
usual from Q = T3 + 1

2
Y . The relevant part of the Standard Model Lagrangian

(after generating mass for the electron) in two-component notation is:

L = i(ψL1
σµ∂µψL1

+ ψL2
σµ∂µψL2

+ ψEσ
µ∂µψE) (16)

− g√
2

[

ψL1
σµψL2

W+
µ + ψL2

σµψL1
W−

µ

]

−me

(

ψL2
ψE + ψL2

ψE

)

.

To convert to four-component notation, one introduces four-component spinors

e =

(

ψL2

ψE

)

, ν =

(

ψL1

0

)

. (17)

Note that in the Standard Model (with a massless neutrino), there is no right-
handed neutrino; i.e., there is no two-component fermion to pair up with
ψL1

. Using the translation table above, it is easy to obtain the corresponding
Lagrangian in four-component notation:

L = i(νγµ∂µν + eγµ∂µe) −
g√
2

[

νγµPLeW
+
µ + eγµPLνW

−
µ

]

−meee . (18)

In deriving this result, I used the fact that ν = PLν and

eγµ∂µe = ψL2
σµ∂µψL2

− (∂µψE)σµψE (19)

= ψL2
σµ∂µψL2

+ ψEσ
µ∂µψE + total divergence .

The total divergence can be dropped.
However, I can just as well introduce a four-component Majorana neutrino:

νM =

(

ψL1

ψL1

)

. (20)

Note that since PL + PR = 1, one can write

1

2
νMγµ∂µνM = 1

2
νMγµ(PL + PR)∂µνM (21)

= 1

2

[

ψL1
σµ∂µψL1

− (∂µψL1
)σµψL1

]

= ψL1
σµ∂µψL1

− 1

2
∂µ(ψL1

σµψL1
) .
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Dropping the total divergence as before, it follows that the Lagrangian in four-
component notation can be written as

L = 1

2
iνMγµ∂µνM + ieγµ∂µe−

g√
2

[

νMγµPLeW
+
µ + eγµPLνMW−

µ

]

−meee .

(22)
Note that ν = PLνM . Thus, we see that for a massless neutrino, we can
either use the Majorana neutrino or the Weyl neutrino. The two theories are
indistinguishable, since they were derived from the same Lagrangian expressed
in two-component notation. The factor of 1

2
that appears in eq. (22) in front

of the kinetic energy term for the Majorana neutrino is correct. Just like in
scalar field theory, if one uses real fields, the corresponding coefficient of the
kinetic energy term is 1

2
while for complex fields it is 1.

Finally, it is simple to add a mass term to the theory of a Majorana
neutrino. For example, in the see-saw mechanism, one introduces a new two-
component field ψN which is completely neutral under SU(2)×U(1). In this
case, one adds a kinetic energy term, iψNσ

µ∂µψN , and the following mass
term

−Lmass = 1

2
(ψL1

ψN )

(

0 mD

mD M

)(

ψL1

ψN

)

+ h.c. (23)

Above, mD is a Dirac mass while M is the Majorana mass. For M ≫ mD, the
eigenvalues of the mass matrix are approximately M and −m2

D/M . One can
define two new two-component fields:

iψa ≃ ψL1
− mD

M
ψN , (24)

ψb ≃ ψN +
mD

M
ψL1

. (25)

The extra factor of i above is required in order to obtain positive masses. (It
can be showed that the sign of the two-component fermion mass is related to
the corresponding CP properties of the field.) Then, it follows that

−Lmass = 1

2

[

m2
D

M
ψaψa +Mψbψb + h.c.

]

+ O
(

m3
D

M2

)

, (26)

which corresponds to a theory of two Majorana fermions, one very light and
one very heavy.

One must employ Majorana neutrino spinors to convert the results of
eq. (26) to four-component notation. For simplicity, consider first the case
of one two-component massive fermion field:

L = iχσµ∂µχ− 1

2
m(χχ+ χχ) . (27)

4



Converting to four-component notation and discarding the total divergence as
before, we end up with a theory of one massive Majorana fermion

L = 1

2
iψMγµ∂µψM − 1

2
mψMψM , (28)

where the four-component Majorana spinor is defined as

ψM =

(

χ
χ

)

, (29)

as discussed earlier. The extension to a theory of two Majorana fermions of
unequal masses is straightforward.

Finally, we note two different limits. As M → ∞, we can discard the
heavy Majorana neutrino from the low-energy effective theory. The mass of
the light neutrino goes to zero smoothly. In the zero mass limit, we can either
use a four-component Majorana or Weyl description. In the limit of M → 0,
the theory contains two mass-degenerate four-component Majorana neutrinos
(both with mass mD). We can express this result equivalently as a theory of
one four-component Dirac neutrino with mass mD. For an explicit verification,
consider the following theory in two-component notation:

L = i(ξ σµ∂µξ + η σµ∂µη) −m(ξη + ξη) . (30)

Introducing the four-component spinor

ψD =

(

ξ
η

)

, (31)

as before, and using the translation table, one obtains in four-component no-
tation (after discarding a total divergence)

L = iψDγ
µ∂µψD −mψDψD . (32)

However, one can perform the analysis differently. Before converting from
two-component notation, note that eq. (30) involves the following 2×2 fermion
mass matrix:

(

0 m
m 0

)

. (33)

The corresponding eigenvalues are ±m. Introduce new two-component fields

ψa =
ξ + η√

2
, (34)

iψb =
ξ − η√

2
. (35)
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Again, we introduce the factor of i in order to obtain positive masses for the
Majorana fermions. Rewriting eq. (30) in terms of the new fields, one obtains

L = i(ψaσ
µ∂µψa + ψbσ

µ∂µψb) − 1

2
m
(

ψaψa + ψaψa + ψbψb + ψbψb

)

. (36)

That is, the theory consists of two mass-degenerate Majorana fermions of mass
m. Thus, we have explicitly demonstrated that one Dirac fermion is equivalent
to two mass-degenerate Majorana fermions.

It is clear that when there is a conserved quantum number, it is more
convenient to express two mass-degenerate Majorana fermions as one massive
Dirac fermion. (No one would express the electron as two mass-degenerate Ma-
jorana fermions, although this can be done.) In the case of massless fermions,
one likewise has a choice whether to use four-component Majorana or Weyl
fermions. Again, the existence of a conserved lepton number in the theory with
massless neutrinos is the reason one usually favors the Weyl over the Majorana
form of the theory. Of course, in theories with massive neutrinos (assuming no
unexpected mass degeneracies), one must employ Majorana fields to describe
the theory. However it must be emphasized that no discontinuities arise in
the limit where two Majorana fermion masses become equal or one Majorana
fermion mass vanishes.
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