
1 Complex representations of scalar fields

Let Φi(x) be a set of n complex scalar fields. The scalar Lagrangian

L = 1

2
(∂µΦi)

†(∂µΦi) − V (Φi, Φ
†
i ) (1)

is assumed to be invariant under a compact symmetry group G, under which
the scalar fields transform as:

Φi → Ui
jΦj , Φ† i → Φ† j(U†)j

i , (2)

where U is a complex representation of G. Using a well-known theorem, all
complex representations of a compact group are equivalent (via a similarity
transformation) to a unitary representation. Thus, without loss of generality,
we may take U to be a unitary n × n matrix. Explicitly,

U = exp[−igaΛ
aT a] , (3)

where the generators T a are n × n hermitian matrices. The corresponding
infinitesimal transformation law is

δΦi(x) = −igaΛ
a(T a)i

jΦj(x) , (4)

δΦ† i(x) = +igaΦ
† j(x)Λa(T a)j

i , (5)

where the ga and Λa are real. One can check that the scalar kinetic energy
term is invaraint under U(n) transformations. The scalar potential, which is
not invariant in general under the full U(n) group, is invariant under G [which
is a subgroup of U(n)] if

(T a)i
jΦj

∂V

∂Φi

− (T a)j
iΦ† j ∂V

∂Φ† i
= 0 (6)

is satisfied.
There are 2n independent scalar degrees of freedom, corresponding to the

fields Φi and Φ† i. We can also express these degrees of freedom in terms of 2n

hermitian scalar fields consisting of φAj and φBj (j = 1, 2, . . . , n) defined by:

Φj =
1√
2
(φAj + iφBj) , Φ† j =

1√
2
(φAj − iφBj) . (7)

It is straightforward to compute the group transformation laws for the hermitian
fields φAj and φBj . These are conveniently expressed by introducing a 2n-
dimensional scalar multiplet:

φ(x) =

(

φA(x)
φB(x)

)

. (8)

That is, φAj(x) = φj(x) and φBj(x) = φj+n(x). Then the inifintesimal form of
the group transformation law for φ(x) is given by φk(x) → φk(x) + δφk(x) for
k = 1, 2, . . . , 2n, where

δφk(x) = −igΛa(T a)k
ℓφℓ(x) , (9)
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and

iT a =

(

−Im T a −Re T a

Re T a −Im T a

)

. (10)

Note that Re T a is symmetric and Im T a is antisymmetric (which follow from
the hermiticity of T a). Thus, iT a is a real antisymmetric 2n×2n matrix, which
when exponentiated yields a real orthogonal 2n-dimensional representation of G.

2 The embedding of U(n) in SO(2n)

Consider a scalar field theory consisting of n identical complex fields Φi, with a
Lagrangian

L = 1

2
(∂µΦi)

†(∂µΦi) − V (Φ†Φ) , (11)

where the potential function V is a function of Φ† iΦi. Such a theory is invariant
under the U(n) transformation Φ → UΦ, where U is an n × n unitary matrix.

Rewrite the Lagrangian in terms of hermitian fields φAi and φBi defined by:

Φj =
1√
2
(φAj + iφBj) , Φ† j =

1√
2
(φAj − iφBj) , (12)

and introduce the 2n-dimensional hermitian scalar field:

φ(x) =

(

φA(x)
φB(x)

)

. (13)

One can show that the Lagrangian is actually invariant under a larger symmetry
group O(2n), corresponding to the transformation φ → Oφ where O is a 2n×2n

orthogonal matrix.
Working in the complex basis, one can show that the Lagrangian [eq. (11)]

is invariant under the transformation:

Φi → Ui
jΦj + Φ† j(V †)j

i , (14)

where U and V are complex n × n matrices, provided that the following two
conditions are satisfied:

(i) (U †U + V †V )i
j = δi

j , (15)

(ii) V T U is an antisymmetric matrix . (16)

In particular, the 2n × 2n matrix

Q =

(

Re (U + V ) −Im (U + V )
Im (U − V ) Re (U − V )

)

(17)

is an orthogonal matrix if U and V satisfy eqs. (15) and (16). One can prove
that any 2n × 2n orthogonal matrix can be written in the form of eq. (17) by
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verifying that Q is determined by n(2n − 1) independent parameters. This is
most easily done with an infinitesimal analysis.

Using the above results, it follows that if U is a unitary n × n matrix, then
the 2n × 2n matrix

QU =

(

Re U −Im U

Im U Re U

)

(18)

provides an explicit embedding of the subgroup U(n) inside O(2n). By writing
QU = exp[−igΛaT a] and U = exp[−igΛaT a], one can show that T a is given by
eq. (10) in terms of the T a.

Moreover, using the well-known formula for the determinant of a block-
partitioned matrix:

det

(

P Q

R S

)

= det P det (S − RP−1Q) , (19)

and writing UR ≡ Re U and UI ≡ Im U , it follows that

det QU = det UTdet [UR + UIU
−1

R UI ] , (20)

after using det U = det UT. Since U is unitary by assumption (since we have
chosen V = 0 in defining QU ), U †U = I implies that

UT

RUR + UT

I UI = I , UT

RUI = UT

I UR , (21)

after separating out the real and imaginary parts. Inserting these results into
eq. (20) and using eq. (21), we find:

det QU = det [UT

RUR + UT

RUIU
−1

R UI ] = det [I − UT

I UI + UT

I UI ] = det I = 1 .

(22)

That is, QU is an element of SO(2n).
Likewise, define QV by taking U = 0 in Q [eq. (17)]. That is, take V to be

a unitary n × n matrix, and define the 2n × 2n matrix

QV =

(

Re V −Im V

−Im V −Re V

)

. (23)

Following the same computation as above, we also find that QV provides an
embedding of the subgroup U(n) inside O(2n). Moreover,

det QV = det (−I) = (−1)n . (24)

For n even, QV provides another embedding of the subgroup U(n) inside SO(2n).
Define the unitary matrix

A =

(

In −iIn

iIn In

)

, (25)
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where In is the n×n identity matrix. Consider a real orthogonal 2n×2n matrix
R that satisfies:

RT AR = A . (26)

Using an infinitesimal analysis (where R ≃ I+Z where Z is an infinitesimal real
antisymmetric 2n × 2n matrix), it is easy to prove that R provides an n ⊕ n

∗

reducible representation of U(n). One can easily verify that both QU and QV

satisfy the constraint given by eq. (26)
Finally, consider the matrix

U =

(

U V ∗

V U∗

)

, (27)

where U and V satisfy eqs. (15) and (16). One can easily verify that U†U = I.
That is, U is a 2n-dimensional unitary matrix. But, it must also be true that
UU† = I, which yields:

(iii) (UU † + V ∗V T)i
j = δi

j , (28)

(iv) UV † is an antisymmetric matrix . (29)
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