Further Analysis of GRB ML0001:

I have modified my untriggered burst search code to look for single GRBs of known start time and relatively unknow direction.

In the process I have confirmed what Julie and Isabel presented at the collaboration meeting and I have also found something else that is very interesting.

 

I use a square bin, the original bin size was chosen to have the same area as the round bin used by Julie. 

The square bin has dimensions 2.8 x 2.8/cos(DEC).  I search on a 0.1 x 0.1 degree map

The first plot shows the number of signal versus RA and DEC. (The background has been subtracted).

grbbs.jpg (408811 bytes)

Next is the Probability Map (-Log10 Prob vs. RA and DEC).

grbprob.jpg (352902 bytes)

Then I opened up the angular bin to minimize the probability.  Below is a map of the actual events in the sky.

skymap1.jpg (286376 bytes)

I then searched in time around the time of the burst.  My original search was +- 100 seconds in 8 second bins. 

Below I show the results for +- 1000 seconds around the burst time.

time.jpg (298486 bytes)

The second burst starts 32 seconds after the original start time and also lasts for 8 seconds.

The probability (pretrial is 17 events with 5.1 expected ~ 2x10-5).

Below I show the distribution of events on the sky for the second burst and then for the two time periods together.

skymap2.jpg (282237 bytes)

skymapt.jpg (374930 bytes)

 

 

I have also made some maps using Gaussian weighting.  There is no background subtraction here.  I used the weights based on the DELANGLE stuff Andy showed at the meeting.

PDF File for original burst.  This is a color plot.

PDF File for second burst.  This is a color plot.

PDF file for sum of bursts.  This is a color lego plot.

 

Below I list all the events in the two bursts.

NEVT

JD

Time

RA

DEC

NFIT

XCORE

YCORE

271874

555

50015.55

290.99

54.28

75

-700

-2500

271995

555

50016

291.4

52.99

14

1300

400

272103

555

50016.36

289.01

55

49

-100

-1100

272290

555

50017.08

290.47

54.83

72

-900

-1000

272346

555

50017.27

291.84

55.18

43

1000

1100

272474

555

50017.68

293.64

53.99

109

1800

-500

272515

555

50017.81

290.97

53

40

1600

-200

272555

555

50017.94

290.07

53.62

55

900

-2200

272591

555

50018.1

290.97

55.28

66

500

-800

272625

555

50018.19

291.78

52.94

34

200

500

272828

555

50018.96

288.34

52.83

32

-500

-2800

272904

555

50019.2

290.05

53.37

30

700

-500

272916

555

50019.25

291.25

54.68

36

600

2300

273205

555

50020.27

292.14

54.75

53

900

1900

273334

555

50020.81

292.29

54.37

34

-200

-1900

273343

555

50020.85

292.46

52.59

32

-200

2100

273359

555

50020.92

290.87

55.49

34

400

3200

273413

555

50021.1

289.09

53.05

73

-700

1300

273598

555

50021.81

289.55

52.94

22

-900

1200

273708

555

50022.21

289.13

52.48

157

1400

-1400

274056

555

50023.43

289.4

54.77

65

-1200

1000

274063

555

50023.47

290.48

55.3

91

-200

-400

280729

555

50047.62

290.73

55.02

62

1300

300

280767

555

50047.75

290.29

55.12

21

-1100

100

280849

555

50048.03

291.48

53.75

123

700

2200

281038

555

50048.68

288.44

53.04

65

0

700

281066

555

50048.76

289.69

54.31

35

1800

-600

281151

555

50049.11

289.51

55.55

31

-700

500

281361

555

50049.91

293.5

55.2

145

-1300

1600

281367

555

50049.94

290.41

54

82

-100

-400

281640

555

50050.91

288.87

52.84

89

2200

-1000

281716

555

50051.17

288.6

52.63

45

200

700

281831

555

50051.67

293.06

52.49

31

800

-200

281846

555

50051.73

288.71

55.78

41

100

1900

282026

555

50052.36

289.06

55.24

117

1100

1500

282343

555

50053.52

290.28

52.36

27

-1200

1400

282679

555

50054.78

293.64

55.29

112

-400

-1900

282718

555

50054.91

290.26

55.54

48

100

-2800

282799

555

50055.21

292.58

54

135

1300

1200