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1. Properties of antisymmetric matrices

Let M be a complex d× d antisymmetric matrix, i.e. MT = −M . Since

det M = det (−MT) = det (−M) = (−1)d det M , (1)

it follows that det M = 0 if d is odd. Thus, the rank of M must be even. In these notes,
the rank of M will be denoted by 2n. If d ≡ 2n then detM 6= 0, whereas if d > 2n, then
detM = 0. All the results contained in these notes also apply to real antisymmetric
matrices unless otherwise noted.

Two theorems concerning antisymmetric matrices are particularly useful.

Theorem 1: If M is an even-dimensional complex [or real] non-singular 2n × 2n an-
tisymmetric matrix, then there exists a unitary [or real orthogonal] 2n × 2n matrix U
such that:

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)}
, (2)

where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal, and the mj are real and positive. Moreover, detU = e−iθ, where −π < θ ≤ π,
is uniquely determined. N is called the real normal form of a non-singular antisymmetric
matrix [1–3].

If M is a complex [or real] singular antisymmetric d× d matrix of rank 2n (where d
is either even or odd and d > 2n), then there exists a unitary [or real orthogonal] d× d
matrix U such that

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)
, Od−2n

}
, (3)

where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal followed by an (d − 2n) × (d − 2n) block of zeros (denoted by Od−2n), and
the mj are real and positive. N is called the real normal form of an antisymmetric
matrix [1–3]. Note that if d = 2n, then eq. (3) reduces to eq. (2).

Proof: Details of the proof of this theorem are given in Appendices A and B.
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Theorem 2: If M is an even-dimensional complex non-singular 2n× 2n antisymmetric
matrix, then there exists a non-singular 2n× 2n matrix P such that:

M = PTJP , (4)

where the 2n× 2n matrix J written in 2× 2 block form is given by:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

. (5)

If M is a complex singular antisymmetric d × d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists a non-singular d× d matrix P such that

M = PTJ̃P , (6)

and J̃ is the d× d matrix that is given in block form by

J̃ ≡




J O

O O


 , (7)

where the 2n×2n matrix J is defined in eq. (5) and O is a zero matrix of the appropriate
number of rows and columns. Note that if d = 2n, then eq. (6) reduces to eq. (4).

Proof: The proof makes use of Theorem 1.1 Simply note that for any non-singular
matrix Ai with detAi = m−1

i , we have

AT

i

(
0 mi

−mi 0

)
Ai =

(
0 1

−1 0

)
. (8)

Define the d× d matrix A (where d > 2n) such that

A = diag
{
A1 , A2 , · · · , An , Od−2n

}
, (9)

where A is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal followed by a (d− 2n)× (d− 2n) block of zeros (denoted by Od−2n). Then, in
light of eqs. (3), (8) and (9), it follows that eq. (6) is established with P = UA. In the
case of d = 2n, where Od−2n is absent in eq. (9), it follows that eq. (4) is established by
the same analysis.

REMARK: Two matrices M and B are said to be congruent (e.g., see Refs. [4–6]) if
there exists a non-singular matrix P such that

B = PTMP .

Note that if M is an antisymmetric matrix, then so is B. A congruence class of M
consists of the set of all matrices congruent to it. The structure of the congruence
classes of antisymmetric matrices is completely determined by Theorem 2. Namely,
eqs. (4) and (6) imply that all complex d× d antisymmetric matrices of rank 2n (where
n ≤ 1

2
d) belong to the same congruent class, which is uniquely specified by d and n.

1One can also prove Theorem 2 directly without resorting to Theorem 1. For completeness, I provide
a second proof of Theorem 2 in Appendix C.
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2. The pfaffian and its properties

For any even-dimensional complex 2n × 2n antisymmetric matrix M , we define the
pfaffian of M , denoted by pfM , as

pfM =
1

2nn!
ǫi1j1i2j2···injnMi1j1Mi2j2 · · ·Minjn , (10)

where ǫ is the rank-2n Levi-Civita tensor, and the sum over repeated indices is implied.
One can rewrite eq. (10) by restricting the sum over indices in such a way that removes
the combinatoric factor 2nn! in the denominator. Let P be the set of permutations,
{i1 , i2 , . . . , i2n} with respect to {1, 2, . . . , 2n}, such that [7, 8]:

i1 < j1 , i2 < j2 , . . . , i2n < j2n , and i1 < i2 < · · · < i2n . (11)

Then,

pfM =
∑

P

′

(−1)P Mi1j1Mi2j2 · · ·Minjn , (12)

where (−1)P = 1 for even permutations and (−1)P = −1 for odd permutations. The
prime on the sum in eq. (12) has been employed to remind the reader that the set of
permutations P is restricted according to eq. (11). Note that if M can be written in
block diagonal form as M ≡ M1 ⊕M2 = diag(M1 , M2), then

Pf(M1 ⊕M2) = (PfM1)(PfM2) .

Finally, if M is an odd-dimensional complex antisymmetric matrix, the corresponding
pfaffian is defined to be zero.

The pfaffian and determinant of an antisymmetric matrix are closely related, as we
shall demonstrate in Theorems 3 and 4 below. For more details on the properties of the
pfaffian, see e.g. Ref. [7–9].

Theorem 3: Given an arbitrary 2n×2n complex matrix B and complex antisymmetric
2n× 2n matrix M , the following identity is satisfied,

pf (BMBT) = pfM detB . (13)

Proof: Using eq. (10),

pf (BMBT) =
1

2nn!
ǫi1j1i2j2···injn(Bi1k1

Mk1ℓ1
Bj1ℓ1)(Bi2k2

Mk2ℓ2
Bj2ℓ2) · · · (Binkn

Mknℓn
Bjnℓn)

=
1

2nn!
ǫi1j1i2j2···injnBi1k1

Bj1ℓ1Bi2k2
Bj2ℓ2 · · ·Binkn

BjnℓnMk1ℓ1
Mk2ℓ2

· · ·Mknℓn
,

after rearranging the order of the matrix elements of M and B. We recognize the
definition of the determinant of a 2n× 2n-dimensional matrix,

detB ǫk1ℓ1k2ℓ2···knℓn = ǫi1j1i2j2···injnBi1k1
Bj1ℓ1Bi2k2

Bj2ℓ2 · · ·Binkn
Bjnℓn . (14)
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Inserting eq. (14) into the expression for pf (BABT) yields

pf (BMBT) =
1

2nn!
detB ǫk1ℓ1k2ℓ2···knℓnMk1ℓ1

Mk2ℓ2
· · ·Mknℓn

= pfM detB .

and Theorem 3 is proved. Note that the above proof applies to both the cases of singular
and non-singular M and/or B.

Here is a nice application of Theorem 3. Consider the following 2n × 2n complex
antisymmetric matrix written in block form,

M ≡




O A

−AT O


 , (15)

where A is an n× n complex matrix and O is the n× n zero matrix. Then,

PfM = (−1)n(n−1)/2 detA . (16)

To prove eq. (16), we write M defined by eq. (15) as [9]

M ≡




O A

−AT O


 =




O 1

AT O







O −1

1 O







O A

1 O


 , (17)

where 1 is the n×n identity matrix. Using eq. (17), PfM is easily evaluated by employing
Theorem 3 and explicitly evaluating the corresponding determinant and pfaffian.

Theorem 4: If M is a complex antisymmetric matrix, then

detM = [pfM ]2 . (18)

Proof: First, we assume that M is a non-singular complex 2n × 2n antisymmetric
matrix. Using Theorem 3, we square both sides of eq. (13) to obtain

[
pf(BMBT)

]2
= (pfM)2(detB)2 . (19)

Using the well known properties of determinants, it follows that

det(BMBT) = (detM)(detB)2 . (20)

By assumption, M is non-singular, so that detM 6= 0. If B is a non-singular matrix,
then we may divide eqs. (19) and (20) to obtain

(pfM)2

detM
=

[
pf(BMBT)

]2

det(BMBT)
. (21)

Since eq. (21) is true for any non-singular matrix B, the strategy that we shall employ is
to choose a matrix B that allows us to trivially evaluate the right hand side of eq. (21).
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Motivated by Theorem 2, we choose B = PT, where the matrix P is determined by
eq. (4). It follows that

(pfM)2

detM
=

[pf J ]2

det J
, (22)

where J is given by eq. (5). Then, by direct computation using the definitions of the
pfaffian [cf. eq. (12)] and the determinant,

pf J = det J = 1

Hence, eq. (22) immediately yields eq. (18). In the case where M is singular, detM = 0.

For d even, we note that Pf J̃ = 0 by direct computation. Hence, eq. (13) yields

PfM = Pf(PTJ̃P ) = (detP )2Pf J̃ = 0 .

For d odd, Pf M = 0 by definition. Thus, eq. (18) holds for both non-singular and
singular complex antisymmetric matrices M . The proof is complete.

3. An alternative proof of detM = [pf M ]2

In Section 2, a proof of eq. (18) was obtained by employing a particularly convenient
choice for B in eq. (21). Another useful choice for B is motivated by Theorem 1. In
particular, we shall choose B = UT, where U is the unitary matrix that yields the real
normal form of M [cf. eq. (2)], i.e. N = UTMU . Then, eq. (21) can be written as

(pfM)2

detM
=

(pfN)2

detN
. (23)

The right hand side of eq. (21) can now directly computed using the definitions of the
pfaffian [cf. eq. (12)] and the determinant. We find

pfN = m1m2 · · ·mn , (24)

detN = m2
1m

2
2 · · ·m2

n . (25)

Inserting these results into eq. (23) yields

detM = [pfM ]2 , (26)

which completes this proof of Theorem 4 for non-singular antisymmetric matrices M .
If M is a singular complex antisymmetric 2n × 2n matrix, then detM = 0 and at

least one of the mi appearing in eq. (2) is zero [cf. eq. (3)]. Thus, eq. (24) implies that
pfN = 0. We can then use eqs. (2) and (13) to conclude that

pfM = pf(U∗NU †) = pfN detU∗ = 0 .
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Finally, if M is a d× d matrix where d is odd, then detM = 0 [cf. eq. (1)] and pfM = 0
by definition. In both singular cases, we have det M = [pf M ]2 = 0, and eq. (26)
is still satisfied. Thus, Theorem 4 is established for both non-singular and singular
antisymmetric matrices.

Many textbooks use eq. (26) and then assert incorrectly that

pfM =
√
detM . WRONG!

The correct statement is
pfM = ±

√
detM , (27)

where the sign is determined by establishing the correct branch of the square root. To
accomplish this, we first note that the determinant of a unitary matrix is a pure phase.
It is convenient to write

detU ≡ e−iθ , where −π < θ ≤ π . (28)

In light of eqs. (24) and (25), we see that eqs. (2) and (13) yield

m1m2 · · ·mn = pfN = pf(UTMU) = pfM detU = e−iθpfM , (29)

m2
1m

2
2 · · ·m2

n = detN = det(UTMU) = (detU)2 detM = e−2iθ detM . (30)

Then, eqs. (29) and (30) yield eq. (26) as expected. In addition, since Theorem 1 states
that the mi are all real and non-negative, we also learn that

detM = e2iθ| detM | , pfM = eiθ| detM |1/2 . (31)

We shall employ a convention in which the principal value of the argument of a
complex number z, denoted by Arg z, lies in the range −π < Arg z ≤ π. Since the range
of θ is specified in eq. (28), it follows that θ = Arg(pfM) and

Arg(detM) =





2θ , if −1
2
π < θ ≤ 1

2
π ,

2θ − π , if 1
2
π < θ ≤ π ,

2θ + π , if −π < θ ≤ −1
2
π .

Likewise, given a complex number z, we define the principal value of the complex square
root by

√
z ≡ |z|1/2 exp

(
1
2
iArg z

)
. This means that the principal value of the complex

square root of detM is given by

√
detM =





eiθ| detM |1/2 if −1

2
π < θ ≤ 1

2
π ,

−eiθ| detM |1/2 if 1
2
π < θ ≤ π or −π < θ ≤ −1

2
π ,

corresponding to the two branches of the complex square root function. Using this result
in eq. (31) yields

pfM =





√
detM , if −1

2
π < θ ≤ 1

2
π ,

−
√
detM , if −π ≤ θ ≤ −1

2
π or 1

2
π < θ ≤ π ,

(32)

which is the more precise version of eq. (27).
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As a very simple example, consider a complex antisymmetric 2 × 2 matrix M with
nonzero matrix elements M12 = −M21. Hence, pfM = M12 and detM = (M12)

2. Thus
if M12 = |M12|eiθ where −π < θ ≤ π, then one must choose the plus sign in eq. (27)
if −1

2
π < θ ≤ 1

2
π; otherwise, one must choose the minus sign. This conforms with the

result of eq. (32). Note that if M12 = −1 then pfM = −1 and detM = 1, corresponding
to the negative sign in eq. (27). More generally, to determine the proper choice of sign
in eq. (27), we can employ eq. (32), where θ = Arg(pf M). In particular, θ can be
determined either by an explicit calculation of pfM as illustrated in our simple example
above, or by determining the real normal form of M and then extracting θ from the
phase of detU according to eq. (28).

4. The group of symplectic matrices

Consider the following set of matrices [4],

L2n(M) =
{
S
∣∣STMS = M

}
, (33)

where M is a fixed complex [or real] non-singular 2n × 2n antisymmetric matrix. It is
easy to check that L2n(M) satisfies the axioms of a group. First, taking the determinant
of STMS = M yields detS = ±1, which implies that S is non-singular. Next, we note
that STMS = M implies that (S−1)TMS−1 = M , so that S−1 ∈ L2n(M). The 2n× 2n
identity matrix 12n ∈ L2n(M). Finally, ST

1 MS1 = M and (S−1
2 )TMS−1

2 = M yield

ST
1 MS1 = (S−1

2 )TMS−1
2 =⇒ (S1S2)

TMS1S2 = M ,

which means that S1, S2 ∈ L2n(M) imply that S1S2 ∈ L2n(M).
We now make use of eq. (4) to write M = PTJP , where J is the antisymmetric

2n× 2n matrix given by eq. (5). It then follows that

L2n(P
TJP ) =

{
S
∣∣ (PSP−1)TJ(PSP−1) = J

}
. (34)

Let us compare thais with L2n(J), obtained by choosing M = J in eq. (33). To avoid
confusion, we relabel S as T and write:

L2n(J) =
{
T
∣∣TTJT = J

}
.

Multiplying all the matrices that appear in L2n(J) on the left by P−1 and on the right
by P yields

P−1L2n(J)P =
{
P−1TP

∣∣TTJT = J
}
.

If we now define T = PSP−1, then it follows that

P−1L2n(J)P =
{
S
∣∣ (PSP−1)TJ(PSP−1) = J

}
.

Comparing with eq. (34), we conclude that

P−1L2n(J)P = L2n(P
TJP ) = L2n(M) . (35)
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The meaning of eq. (35) is as follows. The matrix groups L2n(M) and L2n(J) are
isomorphic, in light of the one-to-one and onto mapping, S → PSP−1. Equivalently,
given the matrix group L2n(J), we can regard the set of matrices defined by L2n(J) as
the defining representation of this group. Then, the set of matrices defined by L2n(M)
provide an equivalent representation of this matrix group, for any non-singular antisym-
metric matrix M .

A complex 2n × 2n matrix S is called symplectic if STJ S = J , where ST is the
transpose of S and

J ≡
(

On 1n

−1n On

)
, (36)

where 1n is the n× n identity matrix and On is the n× n zero matrix. That is,

Sp(n,C) = {S ∈ GL(2n,C) |STJ S = J } .

We see that Sp(n,C) = L2n(J ). From the analysis above, it follows that for any non-
singular, antisymmetric 2n × 2n matrix M , the matrix group L2n(M) is isomorphic to
Sp(n,C) [4].

As previously noted, taking the determinant of STMS = M implies that detS = ±1.
However, we can prove that detS = 1 by making use of the pfaffian. Using eq. (13),

pf(STMS) = pf M detS ,

for any non-singular antisymmetric matrix M . Using the fact that the elements of
L2n(M) satisfy STMS = M , it follows that

pf M = pf M detS , (37)

By assumption, M is non-singular so that detM 6= 0. It follows from eq. (18) that
pf M 6= 0. Thus, we can divide both sides of eq. (37) by pf M to conclude that [10]

detS = 1 . (38)

Thus, we have proven that all the elements of L2n(M) are matrices of unit determinant,
for any non-singular antisymmetric matrix M . In particular, the determinant of any
complex [or real] symplectic matrix is equal to 1.

APPENDIX A: Singular values and singular vectors of a complex matrix

The material in this appendix is taken from Ref. [11] and provides some background
for the proof of Theorem 1 presented in Appendix B. The presentation is inspired by
the treatment of the singular value decomposition of a complex matrix in Refs. [12,13].

The singular values of the general complex n × n matrix M are defined to be the
real non-negative square roots of the eigenvalues of M †M (or equivalently of MM †).
An equivalent definition of the singular values can be established as follows. Since
M †M is an hermitian non-negative matrix, its eigenvalues are real and non-negative
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and its eigenvectors, vk, defined by M †Mvk = m2
kvk, can be chosen to be orthonormal.2

Consider first the eigenvectors corresponding to the non-zero eigenvalues ofM †M . Then,
we define the vectors wk such that Mvk = mkw

∗
k. It follows that

m2
kvk = M †Mvk = mkM

†w∗
k =⇒ M †w∗

k = mkvk . (39)

Note that eq. (39) also implies that MM †w∗
k = m2

kw
∗
k. The orthonormality of the vk

implies the orthonormality of the wk, and vice versa. For example,

δjk = 〈vj |vk〉 =
1

mjmk
〈M †w∗

j |M †w∗
k〉 =

1

mjmk
〈wj|MM †w∗

k〉 =
mk

mj
〈w∗

j |w∗
k〉 , (40)

which yields 〈wk|wj〉 = δjk. If M is a real matrix, then the eigenvectors vk can be chosen
to be real, in which case the corresponding wk are also real.

If vi is an eigenvector of M †M with zero eigenvalue, then

0 = v†iM
†Mvi = 〈Mvi|Mvi〉 ,

which implies that Mvi = 0. Likewise, if w∗
i is an eigenvector of MM † with zero

eigenvalue, then
0 = wT

i MM †w∗
i = 〈MTwi|MTwi〉∗ ,

which implies that MTwi = 0.
Because the eigenvectors of M †M [MM †] can be chosen orthonormal, the eigenvec-

tors corresponding to the zero eigenvalues of M [M †] can be taken to be orthonormal.3

Finally, these eigenvectors are also orthogonal to the eigenvectors corresponding to the
non-zero eigenvalues of M †M [MM †]. That is, if the indices i and j run over the eigen-
vectors corresponding to the zero and non-zero eigenvalues ofM †M [MM †], respectively,
then

〈vj |vi〉 =
1

mj
〈M †w∗

j |vi〉 =
1

mj
〈w∗

j |Mvi〉 = 0 , (41)

and similarly 〈wj|wi〉 = 0.
Thus, we can define the singular values of a general complex n× n matrix M to be

the simultaneous solutions (with real non-negative mk) of:
4

Mvk = mkw
∗
k , wT

kM = mkv
†
k . (42)

The corresponding vk (wk), normalized to have unit norm, are called the right (left)
singular vectors of M . In particular, the number of linearly independent vk coincides
with the number of linearly independent wk and is equal to n.

2We define the inner product of two vectors to be 〈v|w〉 ≡ v
†
w. Then, v and w are orthonormal if

〈v|w〉 = 0. The norm of a vector is defined by ‖v ‖ = 〈v|v〉1/2.
3This analysis shows that the number of linearly independent zero eigenvectors of M †

M [MM
†]

with zero eigenvalue, coincides with the number of linearly independent eigenvectors of M [M †] with
zero eigenvalue.

4One can always find a solution to eq. (42) such that the mk are real and non-negative. Given a
solution where mk is complex, we simply write mk = |mk|eiθ and redefine wk → wke

iθ to remove the
phase θ.
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APPENDIX B: Proof of Theorem 1

In this appendix, we provide a proof of Theorem 1.

Theorem 1: If M is an even-dimensional complex [or real] non-singular 2n × 2n an-
tisymmetric matrix, then there exists a unitary [or real orthogonal] 2n × 2n matrix U
such that:

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)}
, (43)

where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal, and the mj are real and positive. Moreover, detU = e−iθ, where −π < θ ≤ π,
is uniquely determined.

If M is a complex [or real] singular antisymmetric d× d matrix of rank 2n (where d
is either even or odd and d > 2n), then there exists a unitary [or real orthogonal] d× d
matrix U such that

UTMU = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)
, Od−2n

}
,

(44)
where N is written in block diagonal form with 2 × 2 matrices appearing along the
diagonal followed by a (d − 2n) × (d − 2n) block of zeros (denoted by Od−2n), and the
mj are real and positive. Note that if d = 2n, then eq. (44) reduces to eq. (43).

Proof: A number of proofs can be found in the literature [1–3, 12, 14, 15]. Perhaps
the simplest proof is the one given in Ref. [3]. The proof that is provided here was
inspired by Ref. [2] and is given in Appendix D.4 of Ref. [11]. The advantage of this
proof is that it provides a constructive algorithm for obtaining the unitary matrix U .

Following Appendix A, we first consider the eigenvalue equation for M †M :

M †Mvk = m2
kvk , mk > 0 , and M †Muk = 0 , (45)

where we have distinguished between the two classes of eigenvectors corresponding to
positive eigenvalues and zero eigenvalues, respectively. The quantities mk are the singu-
lar values of M . Noting that u†

kM
†Muk = 〈Muk |Muk〉 = 0, it follows that

Muk = 0 , (46)

so that the uk are the eigenvectors corresponding to the zero eigenvalues of M . For each
eigenvector of M †M with mk 6= 0, we define a new vector

wk ≡
1

mk

M∗v∗k . (47)

It follows that m2
kvk = M †Mvk = mkM

†w∗
k, which yields M †w∗

k = mkvk. Comparing
with eq. (42), we identify vk and wk as the right and left singular vectors, respectively,
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corresponding to the non-zero singular values of M . For any antisymmetric matrix,
M † = −M∗. Hence,

Mvk = mkw
∗
k , Mwk = −mkv

∗
k , (48)

and
M †Mwk = −mkM

†v∗k = mkM
∗v∗k = m2

kwk , mk > 0 . (49)

That is, the wk are also eigenvectors of M †M .
The key observation is that for fixed k the vectors vk and wk are orthogonal, since

eq. (48) implies that:

〈wk|vk〉 = 〈vk|wk〉∗ = − 1

m2
k

〈Mwk|Mvk〉 = − 1

m2
k

〈wk|M †Mvk〉 = −〈wk|vk〉 , (50)

which yields 〈wk|vk〉 = 0. Thus, if all the mk are distinct, it follows that m2
k is a doubly

degenerate eigenvalue of M †M , with corresponding linearly independent eigenvectors
vk and wk, where k = 1, 2, . . . , n (and n ≤ 1

2
d). The remaining zero eigenvalues are

(d−2n)-fold degenerate, with corresponding eigenvectors uk (for k = 1, 2, . . . , d−2n). If
some of the mk are degenerate, these conclusions still apply. For example, suppose that
mj = mk for j 6= k, which means that m2

k is at least a three-fold degenerate eigenvalue
of M †M . Then, there must exist an eigenvector vj that is orthogonal to vk and wk

such that M †Mvj = m2
kvj. We now construct wj ≡ M∗v∗j/mk according to eq. (47).

According to eq. (50), wj is orthogonal to vj . But, we still must show that wj is also
orthogonal to vk and wk. But this is straightforward:

〈wj|wk〉 = 〈wk|wj〉∗ =
1

m2
k

〈Mvk|Mvj〉 =
1

m2
k

〈vk|M †Mvj〉 = 〈vk|vj〉 = 0 , (51)

〈wj|vk〉 = 〈vk|wj〉∗ = − 1

m2
k

〈Mwk|Mvj〉 = − 1

m2
k

〈wk|M †Mvj〉 = −〈wk|vj〉 = 0 , (52)

where we have used the assumed orthogonality of vj with vk and wk, respectively. It
follows that vj , wj, vk and wk are linearly independent eigenvectors corresponding to a
four-fold degenerate eigenvalue m2

k of M †M . Additional degeneracies are treated in the
same way.

Thus, the number of non-zero eigenvalues of M †M must be an even number, de-
noted by 2n above. Moreover, one can always choose the complete set of eigenvectors
{uk , vk , wk} of M †M to be orthonormal. These orthonormal vectors can be used to
construct a unitary matrix U with matrix elements:

Uℓ , 2k−1 = (wk)ℓ , Uℓ , 2k = (vk)ℓ , k = 1 , 2 , . . . , n ,

Uℓ , k+2p = (uk)ℓ , k = 1 , 2 , . . . , d− 2n , (53)

for ℓ = 1 , 2 , . . . , d, where e.g., (vk)ℓ is the ℓth component of the vector vk with respect
to the standard orthonormal basis. The orthonormality of {uk , vk , wk} implies that
(U †U)ℓk = δℓk as required. Eqs. (46) and (48) are thus equivalent to the matrix equation
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MU = U∗N , which immediately yields eq. (44), and the theorem is proven. If M is a
real antisymmetric matrix, then all the eigenvectors of M †M can be chosen to be real,
in which case U is a real orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U . For definiteness, we fix
an ordering of the 2 × 2 blocks containing the mk in the matrix N . In the subspace
corresponding to a non-zero singular value of degeneracy d, the matrix U is unique up
to multiplication on the right by a 2d× 2d unitary matrix S that satisfies:

STJS = J , (54)

where the 2r × 2r matrix J , defined by

J = diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
r

, (55)

is a block diagonal matrix with r blocks of 2×2 matrices. A unitary matrix S that satis-
fies eq. (54) is an element of the unitary symplectic group, Sp(d). Since the determinant
of a symplectic matrix is unity [cf. eq. (38)], it follows that detU = e−iθ is uniquely
determined in eq. (43). In particular, the principal value of θ = arg detU (typically
chosen such that −1

2
π < θ ≤ π) is uniquely determined in eq. (43).

If there are no degeneracies among the mk, then r = 1. Since Sp(1)∼=SU(2), it
follows that within the subspace corresponding to a non-degenerate singular value, U
is unique up to multiplication on the right by an arbitrary SU(2) matrix. Finally, in
the subspace corresponding to the zero eigenvalues of M , the matrix U is unique up to
multiplication on the right by an arbitrary unitary matrix.

APPENDIX C: Alternative Proof of Theorem 2

In this appendix, we provide an alternative proof [4–6] of Theorem 2 that does not
employ the results of Theorem 1.

Theorem 2: If M is an even-dimensional complex non-singular 2n× 2n antisymmetric
matrix, then there exists a non-singular 2n× 2n matrix P such that:

M = PTJP , (56)

where the 2n× 2n matrix J written in 2× 2 block form is given by:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

. (57)

If M is a complex singular antisymmetric d × d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists a non-singular d× d matrix P such that

M = PTJ̃P , (58)
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and J̃ is the d× d matrix that is given in block form by

J̃ ≡




J O

O O


 , (59)

where the 2n×2n matrix J is defined in eq. (57) and O is a zero matrix of the appropriate
number of rows and columns. Note that if d = 2n, then eq. (58) reduces to eq. (56).

Proof: Recall that an elementary row operation consists of one of the following three
operations:

1. Interchange two rows (Ri ↔ Rj for i 6= j);

2. Multiply a given row Ri by a non-zero constant scalar (Ri → cRi for c 6= 0);

3. Replace a given row Ri as follows: Ri → Ri + cRj for i 6= j and c 6= 0.

Each elementary row operation can be carried out by the multiplication of an appro-
priate non-singular matrix (called the elementary row transformation matrix) from the
left.5 Likewise, one can define elementary column operations by replacing “row” with
“column” in the above. Each elementary column operation can be carried out by the mul-
tiplication of an appropriate non-singular matrix (called the elementary column trans-
formation matrix) from the right.5 Finally, an elementary cogredient operation6 is an
elementary row operation applied to a square matrix followed by the same elementary
column operation (i.e., one performs the identical operation on the columns that was
performed on the rows) or vice versa.

The key observation is the following. If M and B are square matrices, then M is
congruent to B if and only if B is obtainable from M by a sequence of elementary cogre-
dient operations.7 That is, a non-singular matrix R exists such that B = RTMR, where
RT is the non-singular matrix given by the product of the elementary row operations
that are employed in the sequence of elementary cogredient operations.

With this observation, it is easy to check that starting from a complex d × d anti-
symmetric matrix, one can apply a simple sequence of elementary cogredient operations
to convert M into the form given by




0 1 OT

−1 0 O
T

O O B


 , (60)

where B is a (d−2)×(d−2) complex antisymmetric matrix, and O is (d−2)-dimensional
column vector made up entirely of zeros. (Try it!) If B = 0, then we are done. Otherwise,

5 Note that elementary row and column transformation matrices are always non-singular.
6The term cogredient operation employed by Refs. [4,5], is not commonly used in the modern litera-

ture. Nevertheless, I have introduced this term here as it is a convenient way to describe the sequential
application of identical row and column operations.

7This is Theorem of 5.3.4 of Ref. [5].
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we repeat the process starting with B. Using induction, we see that the process continues
until M has been converted by a sequence of elementary cogredient operations into J or
J̃ . In particular, if the rank of M is equal to 2n, then A will be converted into J̃ after n
steps. Hence, in light of the above discussion, it follows that M = PTJP , where [PT]−1

is the product of all the elementary row operation matrices employed in the sequence of
elementary cogredient operations used to reduce M to its canonical form given by J if
d = 2n or J̃ if d > 2n. That is, Theorem 2 is proven.
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