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The Normal Approximation to the Binomial Distribution

1. Properties of the binomial distribution

Consider a the binomial distribution,

f(x) = C(n, x)pxqn−x ,

where

C(n, x) ≡ n!

x!(n− x)!
.

The function f(x) represents the probability of exactly x successes in n Bernoulli trials
(cf. pp. 756–758 of Boas), where a given trial has two possible outcomes: a “success”
with probability p and a “failure” with probability q = 1 − p. Each repeated trial is an
independent event.

The expectation value of the binomial distribution can be computed using the follow-
ing trick. Consider the binomial expansion

(p+ q)n =

n
∑

k=0

C(n, k)pkqn−k .

Then if we take a derivative with respect to p and then multiply by p we obtain

p
d

dp
(p+ q)n =

n
∑

k=0

kC(n, k)pkqn−k .

Evaluating the left hand side of the above equation then yields

np(p + q)n−1 =

n
∑

k=0

kC(n, k)pkqn−k .

The above result is true for any p and q. If we apply it to the case where q = 1− p, then
we find

np =
n

∑

k=0

kf(k) = x ,

where we recognize
∑n

k=0 kf(k) as the expectation value (or mean) of the binomial dis-
tribution. Hence, we conclude that

x = np .
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By a similar trick, we may compute the variance of the binomial distribution. In this
case, we evaluate

p2
d2

dp2
(p + q)n =

n
∑

k=0

k(k − 1)C(n, k)pkqn−k .

Evaluating the left hand side of the above equation then yields

n(n− 1)p2(p+ q)n−2 =

n
∑

k=0

k(k − 1)C(n, k)pkqn−k .

The above result is true for any p and q. If we apply it to the case where q = 1− p, then
we find

n(n− 1)p2 =

n
∑

k=0

k2f(k)−
n

∑

k=0

kf(k) = x2 − x ,

after recognizing
∑n

k=0 k
2f(k) as the average value of x2 for the binomial distribution.

Since x = np, we conclude that

x2 = n(n− 1)p2 + np .

Hence, the variance is given by

Var(x) = x2 − (x)2 = n(n− 1)p2 + np− n2p2 = np(1− p) .

Since q = 1− p, one can also write this result as

σ2 ≡ Var(x) = npq ,

where σ is the standard deviation.

2. The normal approximation to the binomial distribution

Remarkably, when n, np and nq are large, then the binomial distribution is well
approximated by the normal distribution. According to eq. (8.3) on p.762 of Boas,

f(x) = C(n, x)pxqn−x ∼ 1√
2πnpq

e−(x−np)2/2npq .

In these notes, we will prove this result and establish the size of the correction.
We start with the explicit form for the binomial distribution,

f(x) =
n!

x!(n− x)!
pxqn−x ,

where q = 1 − p. By assumption n, np and nq are large.1 We are interested in ap-
proximating the binomial distribution by the normal distribution in the region where the

1As long as p is not too close to either 0 or 1, it follows that np and nq are both of O(n) as n is taken
large.
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binomial distribution differs significantly from zero. This is the region in the vicinity of
the mean np. Thus, we assume that x does not deviate too much from np. We shall
allow for deviations by some small number of standard deviations. Since σ =

√
npq,

we see that x − np should be of O(
√
n). This is not much of a restriction since once

x deviates from np by many standard deviations, f(x) becomes very small and can be
crudely approximated as being zero. Hence, in what follows we shall take x and n−x to
both be of O(n) as n is taken large.

Using Stirling’s formula [cf. eq. (11.1) and (11.5) on p. 552 of Boas],

n! = nne−n
√
2πn

[

1 +O
(

1

n

)]

,

we have

f(x) =
nne−n

√
2πn

xxe−x
√
2πx(n− x)n−xe−(n−x)

√

2π(n− x)
pxqn−x

[

1 +O
(

1

n

)]

= (p/x)x(q/(n− x))n−xnn

√

n

2πx(n− x)

[

1 +O
(

1

n

)]

=
(np

x

)x
(

nq

n− x

)n−x√
n

2πx(n− x)

[

1 +O
(

1

n

)]

. (1)

It is convenient to define δ = x− np, so that x = δ+ np and n− x = nq− δ. Then it
follows that

ln
(np

x

)

= ln

(

np

np+ δ

)

= − ln

(

1 +
δ

np

)

,

ln

(

nq

n− x

)

= ln

(

nq

nq − δ

)

= − ln

(

1− δ

nq

)

.

Then, using the expansion, ln(1 + x) = x− 1
2
x2 +O(x3), we have

ln

[

(np

x

)x
(

nq

n− x

)n−x
]

= x ln
(np

x

)

+ (n− x) ln

(

nq

n− x

)

= −(δ + np)

[

δ

np
− 1

2

δ2

n2p2
+O

(

δ3

n3

)]

−(nq − δ)

[

− δ

nq
− 1

2

δ2

n2q2
+O

(

δ3

n3

)]

= −δ

[

1 +
1

2

δ

np
− 1 +

1

2

δ

nq
+O

(

δ2

n2

)]

= − δ2

2npq
+O

(

δ3

n2

)

.
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Exponentiating the above result, it follows that the product of the first two terms in
eq. (1) can be written as

(np

x

)x
(

nq

n− x

)n−x

= e−δ2/2npq

[

1 +O
(

δ3

n2

)]

. (2)

Moreover, the square root factor in eq. (1) can be approximated by

√

n

2πx(n− x)
=

√

n

2π(np+ δ)(nq − δ)
=

√

1

2πnpq

[

1 +O
(

δ

n

)]

. (3)

At the beginning of this section, I argued that x should differ from the mean µ = np
by a small number of standard deviations, σ =

√
npq. In particular this number should

be of O(1) as n is taken large. Since x = np+δ, this means that at worst, δ ∼ O(
√
n) for

large values of n. In this case, both O(δ3/n2) and O(δ/n) in eq. (2) and eq. (3) behave
as O(1/

√
n) as n → ∞. Hence, the binomial probability function can been written as

f(x) =
1√

2πnpq
e−(x−np)2/2npq

[

1 +O
(

1√
n

)]

, (4)

which is the normal distribution with parameters µ = np and σ2 = npq, up to corrections
that vanish as n → ∞. Indeed, the mean value µ and the standard deviation σ of the
normal approximation are identical to the mean value and the standard deviation of the
original binomial distribution, respectively. That is, for

φ(x) =
1√

2πnpq
e−(x−np)2/2npq ,

where q = 1− p, one can easily check that

E(x) =

∫

∞

−∞

xφ(x) dx = np ,

and

Var(x) = E(x2)− [E(x)]2 =

∫

∞

−∞

x2φ(x) dx−
(
∫

∞

−∞

xφ(x) dx

)2

= npq ,

by performing the explicit integrations.
The normal approximation to the binomial distribution holds for values of x within

some number of standard deviations of the average value np, where this number is of
O(1) as n → ∞, which corresponds to the central part of the bell curve. As previously
noted, f(x) is small anyway in other parts of the domain, so that we can ignore the
fact that our approximation may not be good there. Eq. (4) also reveals the size of the
first correction to the normal approximation to the binomial distribution. Note that the
O(1/n) term in eq. (1) has been dropped as this term is much smaller than the O(1/

√
n)

correction term that appears in eq. (4).
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